

Analyzing and Combating Attribute Bias for Face Restoration

Zelin Li, Dan Zeng, Xiao Yan, Qiaomu Shen, Bo Tang

- ➢Face restoration: Recover high-quality (HQ) faces from low-quality (LQ) faces
 - Super-resolution, Denoise, Deblur, etc
- ≻Previous Problem: Over-smooth

➢Face restoration: Recover high-quality (HQ) faces from low-quality (LQ) faces

■ Super-resolution, Denoise, Deblur, etc

≻Previous Problem: Over-smooth

- ➢Face restoration: Recover high-quality (HQ) faces from low-quality (LQ) faces
 - Super-resolution, Denoise, Deblur, etc
- Leveraging generative prior

- ➢Face restoration: Recover high-quality (HQ) faces from low-quality (LQ) faces
 - Super-resolution, Denoise, Deblur, etc
- >Leveraging generative prior

Attribute Bias

≻Key face attributes are dramatically different

Input

32×

16×16

≻Key face attributes are dramatically different

>Attribute information loses as image resolution decreases

>Attribute information loses as image resolution decreases

>Attribute information loses as image resolution decreases

Attribute bias enlarges as image resolution decreases

Attribute bias enlarges as image resolution decreases

Attribute bias enlarges as image resolution decreases

≻Affected by the training data distribution

The causes are inevitable
Lack of attribute information
Training data prior

≻The causes are inevitable

- Lack of attribute information Degradation is unavoidable
- Training data prior Hard to collect a large dataset with balanced attribute distribution

≻The causes are inevitable

- Lack of attribute information Degradation is unavoidable
- Training data prior Hard to collect a large dataset with balanced attribute distribution

>Attribute information is obtainable

■ Witness description, Actor profile

≻The causes are inevitable

- Lack of attribute information Degradation is unavoidable
- Training data prior Hard to collect a large dataset with balanced attribute distribution

>Attribute information is obtainable

- Witness description, Actor profile
- ≻Given attribute information, do image restoration
 - Align attribute & image information
 - Let the attribute have a fine-grained impact on the restoration

x

Attribute Representation

≻Methodology:

- Determine the attribute weights
- Base latent vector + <u>weighted sum</u> of attribute representations
- Update the attribute representations through back-propagation (in the training phase)
- ≻Benefits:
 - Fine-grained control by weights
 - Cheap to extend to more attributes

Two-objective Optimization

- Image Restoration
 - Reconstruction Loss
 - Adversarial Loss
- ≻Attribute Consistency

 $\mathcal{L}_{rec} = \lambda_{L_{pix}} \|\hat{y} - y\|_1 + \mathcal{L}_{per}$ $\mathcal{L}_{per} = \|\phi(\hat{y}) - \phi(y)\|_1 + \lambda_{style} \|\operatorname{Gram}(\phi(\hat{y})) - \operatorname{Gram}(\phi(y))\|_1$

$$\mathcal{L}_{adv,D} = \mathbb{E}_{\hat{y}}[\text{Softplus}(D(\hat{y}))] + \mathbb{E}_{y}[\text{Softplus}(-D(y))]$$
$$\mathcal{L}_{adv,G} = \mathbb{E}_{\hat{y}}[\text{Softplus}(-D(\hat{y}))]$$

• Attribute Loss

$$\mathcal{L}_{att} = \mathrm{CE}(a, P(a|\hat{y}))$$

Training Strategy

≻For loss calculation:

- \blacksquare *Y* is degraded to *X* to form pair
- FR model estimate $\hat{\mathcal{Y}}$ based on \mathcal{X}
- Calculate losses based on $\hat{\mathcal{Y}}$, \mathcal{Y} and attribute

≻Model only trained with paired image and attribute label

Pseudo-pair Strategy

- $\succ \hat{\mathcal{Y}}$ is degraded to $\hat{\mathcal{X}}$ by the same degradation model
- \succ Calculate losses based on \widehat{X} , X and attribute ($L_{deg} = |X \widehat{X}|$)
- Straight-through estimator for gradient calculation

Metrics

➢ Information fidelity:■ PSNR, SSIM

➢Image quality:
■ NIQE, FID

$$egin{aligned} ext{SSIM}(x,y) &= rac{(2\mu_x\mu_y+c_1)(2\sigma_{xy}+c_2)}{(\mu_x^2+\mu_y^2+c_1)(\sigma_x^2+\sigma_y^2+c_2)} \ PSNR &= 10\cdot \log_{10}\left(rac{MAX_I^2}{MSE}
ight) \end{aligned}$$

≻Attribute Bias:

Age/Gender error = $1 - \frac{\sum_{y \in \mathcal{D}} \mathbb{I}(\mathbf{C}(\hat{y}) \neq \mathbf{C}(y))}{|\mathcal{D}|}$

C : Pretrained Classifier $c_1 \ c_2$: Constants MAX_I^2 : 255² or 1²

Performance Comparison

≻Quantitatively comparison on CelebA-HQ (Synthesized LQs):

CelebA-HQ	NIQE↓	FID↓	PSNR ↑	SSIM ↑	Age error (%) \downarrow	Gender error (%)↓
Bilinear	16.59	213.3	23.25	0.6951	60.90	14.37
AACNN	4.132	59.80	22.65	0.6052	43.60	2.930
PULSE	3.765	65.90	20.81	0.5695	68.90	14.16
PSFRGAN	3.982	55.88	21.71	0.6173	50.66	3.500
GFPGAN	3.800	53.87	20.72	0.6001	50.50	4.160
GPEN	3.877	47.39	22.12	0.6152	47.70	3.333
VQFR	3.350	52.09	20.48	0.5699	50.60	3.666
Ours	4.411	48.63	21.71	0.6247	22.30	1.467

The best, second results are in **red** and <u>blue</u> respectively.

≻Quantitatively comparison on IMDB&COX (Captured LQs):

IMDB	NIQE↓	FID↓	Age error (%) \downarrow	Gender error (%)↓
PSFRGAN	4.316	39.04	50.72	1.790
GFPGAN	4.133	32.30	48.30	1.699
GPEN	4.719	54.13	49.25	1.155
VQFR	3.540	33.40	50.29	1.631
Ours	4.482	39.41	26.57	0.929
COX				
PSFRGAN	4.521	88.94	61.60	21.19
GFPGAN	5.036	82.52	59.50	20.59
GPEN	4.713	84.01	64.30	22.59
VQFR	4.190	70.00	59.40	22.90
Ours	5.238	80.45	29.50	8.80

The best, second results are in **red** and <u>blue</u> respectively.

Human Interaction

Summarization

Attribute bias problem: facial attributes (e.g., age and gender) of the restored faces could be dramatically different from the target faces

➢Owe it to two leading causes: the lack of attribute information and bias in training data

Propose DebiasFR, which faithfully preserves input attribute information and produces quality HQ faces. Supports human interaction attribute adjustment

Thanks

Presenter: Zelin Li

12132338@mail.sustech.edu.cn

