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Analysis on Attribute Bias

Affected by the training data distribution

(a) (b)
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The causes are inevitable
 Lack of attribute information – Degradation is unavoidable
 Training data prior – Hard to collect a large dataset with balanced attribute 

distribution
Attribute information is obtainable
Witness description, Actor profile

Given attribute information, do image restoration
Align attribute & image information
 Let the attribute have a fine-grained impact on the restoration
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Methodology：
 Determine the attribute weights
 Base latent vector + weighted sum of attribute representations
 Update the attribute representations through  back-propagation 

(in the training phase)

Benefits:
 Fine-grained control by weights
 Cheap to extend to more attributes

Attribute Representation
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 Image Restoration

Reconstruction Loss

Adversarial Loss

Attribute Consistency

Attribute Loss : Pretrained VGG-16
: Discriminator
: Gram matrix
: Restored image
: Target image

Two-objective Optimization



For loss calculation:
 𝒴𝒴 is degraded to 𝒳𝒳 to form pair
 FR model estimate �𝒴𝒴 based on 𝒳𝒳
 Calculate losses based on �𝒴𝒴, 𝒴𝒴 and attribute

Model only trained with paired image and attribute label 

FR 
model

𝒴𝒴 �𝒴𝒴<𝒳𝒳, attribute>

Training Strategy



 �𝒴𝒴 is degraded to �𝒳𝒳 by the same degradation model
 Calculate losses based on �𝒳𝒳, 𝒳𝒳 and attribute (𝐿𝐿𝑑𝑑𝑑𝑑𝑑𝑑 = 𝒳𝒳 − �𝒳𝒳 )
 Straight-through estimator for gradient calculation

FR 
model

𝒴𝒴 �𝒴𝒴 �𝒳𝒳<𝒳𝒳, attribute>

Pseudo-pair Strategy



Information fidelity:
 PSNR, SSIM

Image quality:
 NIQE, FID

Attribute Bias:

: Pretrained Classifier
: Constants
: 2552 or 12

Metrics



Quantitatively comparison on CelebA-HQ (Synthesized LQs): 

The best, second results are in red and blue respectively. 

Performance Comparison



Quantitatively comparison on IMDB&COX (Captured LQs): 

The best, second results are in red and blue respectively. 





Human Interaction



Summarization

 Attribute bias problem: facial attributes (e.g., age and gender) of the 
restored faces could be dramatically different from the target faces

Owe it to two leading causes: the lack of attribute information and 
bias in training data

Propose DebiasFR, which faithfully preserves input attribute 
information and produces quality HQ faces. Supports human 
interaction attribute adjustment
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