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Rethinking Dual-Stream Super-Resolution
Semantic Learning in Medical Image

Segmentation
Zhongxi Qiu∗, Yan Hu∗, Xiaoshan Chen, Dan Zeng, Qingyong Hu, Jiang Liu, Senior Member, IEEE

Abstract—Image segmentation is fundamental task for medical image analysis, whose accuracy is improved by the development of
neural networks. However, the existing algorithms that achieve high-resolution performance require high-resolution input, resulting in
substantial computational expenses and limiting their applicability in the medical field. Several studies have proposed dual-stream
learning frameworks incorporating a super-resolution task as auxiliary. In this paper, we rethink these frameworks and reveal that the
feature similarity between tasks is insufficient to constrain vessels or lesion segmentation in the medical field, due to their small
proportion in the image. To address this issue, we propose a DS2F (Dual-Stream Shared Feature) framework, including a Shared
Feature Extraction Module (SFEM). Specifically, we present Multi-Scale Cross Gate (MSCG) utilizing multi-scale features as a novel
example of SFEM. Then we define a proxy task and proxy loss to enable the features focus on the targets based on the assumption
that a limited set of shared features between tasks is helpful for their performance. Extensive experiments on six publicly available
datasets across three different scenarios are conducted to verify the effectiveness of our framework. Furthermore, various ablation
studies are conducted to demonstrate the significance of our DS2F. We share our project athttps://github.com/Qsingle/imed vision.

Index Terms—Medical image segmentation, Dual-stream learning, Super-resolution, Shared feature.
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1 INTRODUCTION

M Edical image segmentation, which aims to automat-
ically identify and delimit regions of interest (RoI)

within medical images, is a widely applied technique for
facilitating automatic diagnosis in the medical field. A deep
neural networks can provide high-performance analysis,
they have been obtaining increasing attention in a variety of
medical demand, including vessel segmentation [1], [2], [3],
lesion segmentation [4], [5], [6], tumor segmentation [7], [8],
[9]. The use of high-resolution representation, which offer
rich semantic and spatial details, is particularly desirable
for boundary recognition and object localization [10], and is
also a requirement for many deep-learning-based segmenta-
tion algorithms. However, in practical medical applications,
limited by the computational ability of imaging capturing
or operating devices, it is not often possible to obtain high-
resolution segmentation results for diagnosis.

To achieve high-accuracy segmentation results despite
limited computational resources, researchers have explored
a variety of approaches. A typical way is to reduce the
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computational demands of the algorithms themselves, such
as reducing input image size or lightweight models. The
size of the input image is often reduced by downsampling
[5], [6], [11] or patch splitting [12], [13], [14], which may
cause segmentation results with low-resolution or with
chessboard effect, which can negatively impact accuracy.
The resolution of input images has been shown to have
a significant impact on the accuracy of segmentation re-
sults generated by lightweight models [15], [16], [17].Low-
resolution or noisy images usually exist in medical scenes,
which results in unsatisfactory segmentation results.

Single segmentation networks alone may not be able
to extract sufficient features from low-resolution input to
achieve high accuracy. To address this issue, researchers
have proposed utilizing a single image super-resolution
(SISR) network as an auxiliary to enhance the resolution of
the segmentation results [18], [19], [20], [21], which is ex-
pected to meet the demands of medical practitioners. Most
of these approaches have aligning the segmentation features
with the SISR branch through a feature transform module,
and minimizing the distance between the features through a
feature affinity [18], [19]. The shared decoder is explored to
extract the shared features, whose similarity is constrained
by the structural similarity loss. For example, the structure
similarity loss is adopted to constrain the features [20], and
the L1 regularization constraint is introduced in CogSeg to
minimize the distance between the features of the decoders
for the task [21].

The objectives of the super-resolution and semantic
segmentation tasks are distinct, with the former aimed at
producing high-resolution images, and the latter focused
on identifying regions of interest within images. How-
ever, many existing dual-stream algorithms often adopt
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feature similarity between super-resolution and semantic
segmentation to constrain feature learning. Such manda-
tory feature similarity constraints can lead to suboptimal
model optimization or collapse. Moreover, the proportion
of vessels or lesions in medical images is often relatively
small, making it difficult to effectively constrain the targets
using similarity loss of the whole image features alone.
Such algorithms cannot dig out the target-related shared
features between the medical image semantic segmentation
and the super-resolution task. In other words, the auxiliary
super-resolution task is not effectively contributing to region
of interest-related feature learning when only relying on
features similarity constraints. To overcome this limitation,
we rethink the dual-stream learning framework and find
new ways to extract shared features related to the RoI.

As illustrated by Argyriou et.al. [22], multiple tasks share
a small set of features, which is also applicable to our dual-
stream framework in the medical field. We believe that the
more shared characteristics are related to the RoI, the higher
the segmentation accuracy will be. The paper mainly con-
siders how to focus these small number of shared features
on our area of interest as much as possible. Specifically,
we propose a novel high-resolution medical image semantic
segmentation framework, named Dual-Stream Shared Fea-
ture (DS2F) framework, exploring the RoI-related shared
features between segmentation and super-resolution. The
DS2F framework consists of a semantic image segmentation
network, a super-resolution network, and a shared feature
extraction module (SFEM). We propose a novel feature
extraction and supervision way in the SFEM.

Due to the small proportion of RoI in medical images,
their corresponding features for segmentation are dispersed
or sparse. Existing feature integration methods, such as
concatenation or convolution 1 × 1, which treat all the
features equally, are not effective in assigning higher im-
portance to RoI features. We consider that there is spatial
structure correspondence of features between segmentation
and super-resolution tasks, such as vessels or lesion areas.
Thus, we first propose a new way to bestow RoI features
with higher weights based on the consideration of channel
selection and spatial structure correspondence. Second, for
the supervision ways, as it is too difficult to obtain the
ground truth of share features between two tasks, we cannot
adopt supervision ways to extract shared information in
SFEM. As the shared features are supposed to improve the
performance of both tasks, we propose to convert the super-
vision of shared information extraction into the problem of
how to improve the performance of both tasks based on the
shared information. Thus, we define a proxy task to extract
the shared features in SFEM.

The DS2F framework presented in this paper is an
extension and improvement of our previous works [23],
[24]. First, we have enhanced the theoretical foundations
of shared information between tasks. Second, we further
generalize the structures of extracting shared information
and define a proxy task. Third, we conduct experiments
with different medical scenarios and verify the effectiveness
of our DS2F framework on the cityscape dataset. Finally,
the comprehensive ablation studies further prove the ef-
fectiveness of the structure design. Our contributions are
summarized as follows:

1. We rethink the dual-stream segmentation and super-
resolution framework and identified that the main limita-
tion of existing dual-stream networks when applied to med-
ical image segmentation is that the similarity loss of global
features cannot effectively constrain the small proportion
of RoI. Therefore, we propose a shared feature extraction
method, which can focus on the region of interest as much
as possible.

2. The proposed Dual-Stream Shared Feature (DS2F)
framework incorporates a semantic segmentation branch,
a super-resolution branch, and a shared feature extraction
module (SFEM). For SFEM, we propose a novel feature
extraction and supervision way. Specifically, we propose
a new instance of SFEM, named multi-scale cross gate
(MSCG), and a proxy loss for module constraint. The ex-
tracted features mainly focus on the RoI, such as the vessels
and lesions.

3. The proposed DS2F framework has been evaluated on
five publicly available datasets across two distinct medical
scenarios. The results of an ablation study demonstrate the
superiority of our proposed module. We implement the al-
gorithm by Pytorch framework, which is publicly available
at https://github.com/Qsingle/imed vision

2 RELATED WORK

Semantic Segmentation: As illustrated by Horwath et al.
[25], high-resolution feature representation is critical for
medical image segmentation. However, learning or retain-
ing high-resolution feature representation is a challenging
problem, and the collaboration of medical image segmen-
tation increases the problem’s difficulty. To learn high-
resolution feature representation, researchers have explored
different algorithms, such as atrous convolution [26], dense
atrous convolution (DAC) blocks [1], and scale-aware fea-
ture aggregation (SFA) modules [2]. Moreover, attention
mechanisms are also used to retain important features
for representation. For example, CS-Net uses channel-and-
spatial attention [25] for segmentation. However, to obtain
high-resolution segmentation results, the existing methods
are often computationally expensive in both training and
test phases, which limits their applications to resource-
constrained devices in the medical field.

To degrade the computation costs, researchers have also
explored lightweight models. For example, SA-UNet [16]
uses spatial attention to retain important information while
reducing the number of filters. ESPNets [27], [28] adopts
the reduce-split-transform-merge strategy, which accelerates
the convolutional neural network and optimizes for the
edge devices. Mobilenets [29], [30], [31] use the depthwise
separable convolution and the inverted bottleneck to reduce
the computational cost for the model. However, lightweight
models with relatively low computation costs often provide
limited segmentation performance as they may not obtain
rich feature support. To achieve high-accuracy results with-
out increasing computational cost, we propose a framework
based on the dual-stream learning framework using low-
resolution inputs. The framework takes a super-resolution
stream as an auxiliary task, which provides extra features
for the segmentation task during training and is deleted
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(a) (b) (c)

Fig. 1. Visualization of the features from segmentation branches. KMeans are used to produce the results, in which the number of clusters is set as
5. (a) The input image; (b) The extracted segmentation features by DSRL [18]; (c) The extracted segmentation features by our DS2F framework.
The rich features in Fig. (c) are helpful to discriminate the vessel structure. The vessel features in Fig. (b) are destroyed, and the vessels are hardly
classified around the macular and optic. Our DS2F framework mainly focuses on the features of RoI, such as vessels.

during the test, without increasing the computation costs
of medical image segmentation.
Dual-Stream Super-Resolution Semantic Learning: Single-
image super-resolution networks can extract high-resolution
features outputting high-resolution results only based
on low-resolution input. Based on the characteristic, re-
searchers have proposed dual-stream super-resolution se-
mantic learning frameworks to degrade the computation
costs without decreasing the segmentation accuracy [18],
[19], [20], [32], [33]. For natural scenes, these frameworks
focus on the whole counterparts in images. For example,
DSRL [18] adopts a feature affinity (FA) module to con-
straint the network to extract similar features from two
tasks, and ColSeg [20] uses structural affinity block to con-
straint features from two streams. For the medical field, Yu
et al. [19] proposed CogSeg for CT segmentation guided
by super-resolution learning, in which the L1 losses of
decoder layers from two tasks are adopted. Wang et al.
[32], [33] adopted a spatial similarity matrix to constrain the
features from two streams and a selective cropping strategy
for guidance. We analyze such dual-stream frameworks
and identify their limitations. Firstly, from the task-specific
level, the features extracted from different tasks cannot be
strictly similar. Secondly, for medical segmentation regions
(vessels or lesions), their proportions in the whole image
are relatively small, so the features from the segmentation
stream are supposed to be mostly different from those from
the super-resolution stream. Thus, purely feature similarity
between two streams cannot provide reasonable constraints
on medical RoI segmentation. To solve these limitations,
the shared features extracted by our proposed framework
mainly focus on the medical region of interest. We also
propose a novel supervision way to optimize the shared
feature extraction.

3 METHOD

3.1 Problem Preliminary
For the dual-stream super-resolution learning of the se-
mantic segmentation model, we adopt one shared encoder
mapping the input x to the features Fen, and two task-
specific decoders dealing with the features Fen to two task-
dependent parts Fseg and Fsr . Then Seg Head (the task
head for semantic segmentation) outputs the segmentation

results Oseg based on features Fseg , and SR Head (the task
head for super-resolution) provides the corresponding high-
resolution image Osr mapped by features Fsr. We define the
process as follows:

Fen = Encoder(x) (1)
Fseg = Decoderseg(Fen) (2)
Fsr = Decodersr(Fen) (3)
Oseg = Headseg(Fseg) (4)
Osr = Headsr(Fsr) (5)

where Encoder is the shared encoder, Decoderseg and
Decodersr are the decoders for segmentation and super-
resolution respectively, Headseg and Headsr are the task
head for segmentation and super-resolution separately.

Several papers [18], [19], [20] adopt a loss of feature
similarity between two tasks for constraint. In other words,
they try to minimize the distance between features Fseg

and Fsr . This may produce a good performance for natural
scenarios, whose proportions of ROIs are large. For medical
images, the proportions of ROIs are often very small. The
feature similarity loss of the whole image may not efficiently
work for such medical image segmentation. We analyze
the existing dual-stream learning framework applied in the
blood vessel segmentation, as shown in Fig. 1. The model
with feature similarity loss cannot extract sufficient features
related to our target vessel in Fig. 1 (b). Super-resolution
network reconstructs amounts of high-frequency details
from low-resolution input, including RoI and other areas. As
the loss or model cannot constrain the dual-stream learning
framework to extract RoI-related features, the auxiliary task
does not work for medical image segmentation. As its
targets are often tiny, the whole feature constraints cannot
be helpful, which may lead to constraining in the wrong
direction or collapsing. Therefore, we propose to fully adopt
the information captured from different tasks instead of
enforcing feature similarity constraints.

As there is no ground truth to supervise the extraction
of shared features, how to oversee a module to extract
these features becomes challenging. The features extracted
by each task are formulated as

Ft =
d∑

i=0

Fi (6)
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Fig. 2. The pipeline of our medical image dual-stream framework. (a) The pipeline of our Dual-Stream Shared (DS2F) framework. (b) The structure
of the multi-scale cross gate (MSCG), which is a novel instance of SFEM. The c⃝ is concatenation operation, ⊙ is the Hadamard product, and ⊕ is
element-wise addition.

where i is the index of task, d is the number of tasks,
Ft ∈ IRd is the summation of task features, and F is the
features from the corresponding task. For instance, in our
paper, as the framework includes two tasks, d equals to 1,
i = 0, 1, Ft is the concat of segmentation features and super-
resolution features (as shown in Fig.2(b)). As multiple tasks
only share a small set of features, we expect that the small set
of features is able to focus on the segmentation RoI as much
as possible, providing detailed features for segmentation
and super-resolution. In other words, the objective of our
framework is to extract a small set of shared features from Ft

to improve the performance of medical image segmentation.
Thus, we propose a simple but efficient idea minimizing the
distances of corresponding task results, which are generated
by the shared features and task targets, formulated as:

Min(α(HeadSeg(Aseg ⊙ Fseg), targetSeg)+

β(HeadSR(Asr ⊙ Fsr), targetSR))
(7)

where α and β are the coefficients to adjust the weights for
each task, HeadSeg is the head to generate the segmentation
results, HeadSR is the head to generate the super-resolution
results. Aseg and Asr are the weights of the segmentation
and super-resolution features, respectively. Fseg and Fsr

are the segmentation and super-resolution features, respec-
tively. targetSeg and targetSR are the targets of segmenta-
tion and super-resolution tasks. As shown in Fig. 1(c), our
framework extracts more features focusing on the vessels,
which are supposed to be the shared target between vessel
segmentation and super-resolution task.

We have explored several existing feature interaction
operations, which can improve the results for the shared
feature extraction module (SFEM) in our DS2F framework.
For example, the previously proposed modules [23], [24]
can increase the segmentation accuracy of the blood vessels

and lesions, respectively. A simple feature intersection is
also efficient, and we will explain and prove it in the
following section. Moreover, we propose another efficient
feature extraction module, which can be suitable for various
medical scenarios.

3.2 Dual-Stream Shared Feature (DS2F) Framework

As shown in the Fig. 2(a), a down-sampled image x with
size W/n × H/n is fed into the shared encoder, which
produces the encoded features Fen, formulated as Equa-
tion 1. The segmentation decoder DecoderSeg and super-
resolution decoder Decodersr deal with the Fen to output
decoded features Fseg and Fsr , formulated as Equation 2
and 3. As formulated by Equations 4 and 5, SegHead and
SRHead deal with the decoded features to output the final
targets, segmented target Oseg and high-resolution images
Osr , respectively. The losses LSeg and LSR are adopted to
constrain the semantic segmentation and super-resolution
streams, respectively. Then we propose a Shared Feature
Extraction module (SFEM) to extract our defined small set
of shared features between two tasks and use the task
interaction loss LTI to constraint the module learning.

In our DS2F framework, the objective of SFEM is to
extract the shared features between two tasks. It first in-
tegrates information from two tasks, then extracts shared
features based on the attention weights. The reweighted
features are input into Seg Head and SR Head to generate
the corresponding results for proxy tasks. The proposed
task interaction loss LTI constraints the SFEM learning.
The components of the SFEM can be various. For example,
simply one 1 × 1 Conv and the existing channel or other
attention mechanisms can be used to integrate the features
from two streams. 1 × 1 Conv can be directly applied to
generate the attention weights based on the fused features.
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Our previously proposed modules [23], [24] also can be
suitable for specific medical image segmentation. Here, we
present another novel instance to extract the shared features
named the Multi-Scale Cross Gate (MSCG) module.

3.3 Multi-Scale Cross Gate (MSCG) module

We propose a Multi-Scale Cross Gate (MSCG) module as a
new example of the SFEM. Its construction is shown in Fig.
2(b). We utilize one 1 × 1 Conv to fuse features Ffu, our
modified residual channel attention block (MRCAB), and
a proposed multi-scale convolution (MS-Conv) to integrate
the features from two tasks. Then we merely use two 1 × 1
Conv to generate the attention weights for two tasks. We
will introduce the details of our proposed MRCAB and MS-
Conv in the following.
Modified Residual Channel Attention Block (MRCAB) As
the low-resolution input images contain lots of redundant
information, we propose a modified residual channel atten-
tion block (MRCAB) to focus on more specific components
related to the necessary small set of shared features, which is
inspired by RCAB [34]. As shown in Fig. 3 (a), we adopt two
3 × 3 depthwise convolutions to capture the local pattern
from the integrated features. Instead of a global average
to statistic the global spatial information, we propose to
use two linear layers to directly squeeze and expand the
features, capturing the channel relationship. Then a Sigmoid
function generates the weights along the channel axis based
on the above features. The weights re-weight the above
local pattern by Hadamard product. Finally, the input Ffu is
added to the re-weighted features. The process is formulated
as:

Ffu = W (C(Fseg, Fsr)) (8)
z = Convdw(Convdw(Ffu)) (9)
FCA = σ(W (δ(W (z))))⊙ z (10)
FMRCAB = Ffu + FCA (11)

where Ffu is the input features, C is the concatenate oper-
ation, Convdw is the depthwise convolution, δ and σ are
LeakyReLU and Sigmoid, respectively, W is the weights
of Conv 1 × 1. The proposed MRCAB further fuses the
decoded features, and its channel-wise statistics enhance the
discriminative ability of features from different tasks. We
adopt the depthwise convolution in the MRCAB to reduce
the computation, which also mixes the information in spatial
space.
Multi-scale Convolution (MS-Conv) As discussed above,
the features FMRCAB dig out the helpful information that
improves the performance of both segmentation and super-
resolution tasks. We propose one Multi-Scale Convolution
(MS-Conv) that is a multi-scale strategy using the informa-
tion from different scales. Its structure is shown in Fig. 3 (b).
We divide the features FMRCAB into k groups according
to the channel size. Then we adopt different processing
ways for various groups of information. A 1 × 1 Conv is
applied to the first group to keep the current scale. For
the second to (k − 1)th group, we adopt 3 × 3 depthwise
convolution with different dilation rates to capture various
levels of information, in which the dilation rates are set as
the group index minus 1. For the kth group, image pooling

Fig. 3. Our proposed modules. (a) The structure of our proposed Mod-
ified Residual Channel Attention Block (MRCAB); (b) The structure of
Multi-Scale Convolution (MS-Conv).

[35] is adopted to statistic the global spatial information.
Batch normalization is used to integrate the information
of the groups’ combinations. Finally, GELU is used as the
nonlinear activation function for the layer. The MRCAB
extracts the most significant shared features related to our
RoI.

Based on the above description, the procedure of the MS-
Conv is formulated as:

FMS = δ(N(C(W1(S1),W2(S2
), . . . ,Wk−1(Sk−1), IP (Sk))

(12)
where FMS is the features extracted by our pro-
posed MS-Conv, S is one group of features (including
S1, S2, ..., Sk−1, Sk), which are split from FMRCAB based on
the channel. k is the index of the group. W1,W2, ...,Wk−1

are the weights of the convolutional layer for every features
in the group. C is the concatenation operation, IP is the im-
age pool operation, N and δ are the normalization operation
and GELU activation function respectively.

In the MSCG module, we use two 1 × 1 Conv mapping
the output of our MS-Conv to the space of segmentation de-
coded features Fseg and super-resolution decoded features
Fsr, respectively. Then, we use the Hadamard product to
separately combine the outputs with Fseg and Fsr . After
processing by 1 × 1 Conv, the results are added with Fseg

and Fsr . Then we can obtain the re-scaled decoded features
for segmentation and super-resolution tasks. Finally, the
outputs of segmentation and super-resolution tasks Ofuseg

and Ofusr are processed by task heads Headseg and Headsr ,
respectively. The process is formulated as:

Ofuseg = Headseg(δ(W2(δ(W1(FMS))⊙ Fseg))) (13)
Ofusr = Headsr(δ(W2(δ(W1(FMS))⊙ Fsr))) (14)

where δ is GELU, W1 and W2 is the weights for two 1 × 1
Conv as shown in MSCG module (Fig. 2(b)).
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3.4 Objective Function
As shown in Fig. 2, our objective function of the DS2F
framework includes three parts: LSeg for segmentation task,
LSR for super-resolution task, and LTI for the task interac-
tion to constrain our shared feature extraction module. We
introduce them one by one in the following.

For the segmentation task, we employ a common cross-
entropy loss function, formulated as:

LSeg =
1

C

C∑
i=0

−yi log(zi) (15)

where C represents the number of classes, yi is the ground
truth of class i, and z is the softmax result of the output
OSeg . To simplify the implementation of the code, we take
the binary segmentation task as the segmentation task of
two classes, the target RoI and the background.

We employ a mean square error (MSE) function for
super-resolution task, described as:

LSR =
1

N

N∑
i=0

(OSRi
−HRi)

2 (16)

where N is the number of pixels of the image, OSR is
the output of the super-resolution task, HR is the high-
resolution target image, and i represents the index of the
pixel.

The interaction part plays a vital role in extracting shared
features in our DS2F framework, whose objective function
is one of our major concerns. As there is no exact definition
or ground truth for the shared features, we cannot directly
adopt supervised feature extraction. Here, we propose a
proxy-loss way to get the supervision implicit. As illus-
trated, the small set of shared features is supposed to im-
prove the performance of both tasks. Based on this property,
we deduce that the segmentation or super-resolution results
predicted by the combination with shared features should
be better than those only by single-task features. Thus, we
propose to use the following objective function as one proxy
objective of our DS2F framework, so that the shared features
are mined implicitly. The formulation of LTI for our SFEM
is defined as:

LTI = LProxySeg(Ofuseg, Y ) + LProxySR(Ofusr, HR)
(17)

where Y is the ground truth of the segmentation task, and
HR is the target high-resolution image.

For the proxy-task losses, there are two strategies, the
same as the other two streams (such as cross-entropy or
MSE ), or higher strength of constraint. The former can
improve the results but may not explore the enormous set of
shared features caused by the same constraint strength. The
latter often gains better supervision to explore the shared
features. We will explore and discuss this in the experiment
section4.2.1.

4 EXPERIMENTS

4.1 Experiments settings
4.1.1 Datasets
We conduct our experiments on six publicly available
datasets, including three for retinal vessel segmentation

(two different image modalities), two for retinal lesion seg-
mentation (multiple targets), and one for cityscape segmen-
tation. As listed in Table 1, the proportions of vessels or
lesions in the medical images are remarkably small, less than
8%, such as the lesion only accounts for 0.79% in the DDR
dataset. The proportion in the Cityscapes dataset is about
97.38%, much higher than that in medical image datasets.

TABLE 1
The illustration of datasets for the experiments. Proportion represents

the percentage of RoI areas in the whole dataset.

Dataset Task Size Proportion(%)

HRF [36] Vessel 45 7.71
PRIME-FP20 [37] Vessel 15 2.54

FIVES [38] Vessel 800 7.46
IDRID [39] Lesion 81 2.09
DDR [40] Lesion 757 0.79

Cityscapes [41] Cityscape 5000 97.38

HRF: The HRF (High-Resolution Fundus) [36] dataset
includes 45 fundus images with the size of 3504 × 2336 in
total, of which 15 are from healthy patients, 15 are from
patients with glaucoma, and 15 have Diabetic Retinopathy
(DR). We conduct the five-fold cross-validation experiments
at this dataset and set 1752×1168 as the target resolution for
the super-resolution task. We set the batch size and epoch
number as 2 and 300, respectively.

PRIME-FP20: It provides 15 high-resolution ultra-
widefield (UWF) fundus photography (FP) images using
Optos 200Tx camera, and their resolution is 4000 × 4000.
We use the official mask to remove the invalid area in the
images, then the minimal and max height for the images
are 2444 and 2631, and the minimal and max-width for the
images are 2817 and 2932. The five-fold cross-validation is
applied to this dataset. Considering the computation ability
of our devices, the output size for the super-resolution task
is set as 1408×1296. We set the batch size and epoch number
as 2 and 300, respectively.

FIVES: The FIVES [38] (Fundus Image Vessel Segmen-
tation) dataset consists of 800 high-resolution (2048× 2048)
multi-disease color fundus with acceptable vessel pixel an-
notation. The dataset contains train (600 images) and test
(200 images) sets. We set the batch size and epoch number
as 4 and 128, respectively.

IDRID: The IDRiD (India Diabetic Retinopathy Image
Dataset) [39] dataset consists of 81 color fundus images
with adequate pixel-level annotation of four types of retinal
lesions: microaneurysms(MA), soft exudates(SE), hard exu-
dates(EX), and hemorrhages(HE). The dataset is split into a
training set with 54 images and a testing set with 27 images.
We run the training for 300 epochs with batch size 2.

DDR: The DDR [40] is another dataset applied for lesion
segmentation. It provides 757 color fundus images with
acceptable pixel-level annotation. The images are split into
three sets for training, validation, and testing with a ratio
of 5:2:3. We set 1024 × 1024 as the target resolution for the
super-resolution task. On this dataset, we set the batch size
to 2 and the training epoch to 128.

Cityscapes: The Cityscapes [41] dataset consists of 5000
images with fine-grained annotation for urban visual scene
understanding. There are 2975 images for training, 500
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for validation, and 1525 for testing. The images are col-
lected from 50 cities in different seasons with image size
2048 × 1024. Following previous works, we also do the 19
categories of segmentation. We set the batch size to 4 and
the training epoch to 108. We resize the image to 1024× 512
as the model input and set the upscale rate to 2.

4.1.2 Evaluation Metrics
For the vessel segmentation task, we adopt the intersection
over union (IoU), bookmaker informedness (BM), Matthews
correlation coefficient (MCC), and dice score (Dice) to eval-
uate the performance of the models. For the lesion seg-
mentation task, IoU, precision and recall area under the
curve (PR-AUC), and dice score are adopted to evaluate
the performance of the model, due to the MCC and BM
are not suitable for the evaluation of the multi-categories
classification task. We use the most common evaluation met-
ric mean intersection over union (mIoU) for the cityscape
segmentation task. The formulations are as follows:

IoU =
TP

TP + FN + FP
(18)

BM =
TP

TP + FN
+

TN

TN + FP
− 1 (19)

Dice =
2× TP

2× TP + FN + FP
(20)

where TP , TN , FP , and FN are the true positive, true neg-
ative, false positive, and false negative respectively. More
details are in Appendix C.

4.1.3 Implementation Details
We implement the models by Pytorch [42] framework, and
all experiments are run on the machine with one NVIDIA
RTX A6000 graphics card. The mini-batch stochastic gradi-
ent descent (SGD) with a momentum of 0.9 and a weight
decay of 0.0001 is applied to optimize the model. Poly
learning rate adjusts strategy [43] is adopted to set the
learning rate dynamically during training, which sets the
learning rate according to lr = init lr×(1− iter

max iter )
power,

and we set init lr = 0.01, power = 0.9.

TABLE 2
Experiment results of different strategies for the proxy loss based on

HRF and Prime-FP20 datasets (mean± std). Higher strength of
constraint produces better results.

Dataset Loss IoU(%) MCC(%) BM(%)SR Seg

HRF

N/A N/A 61.12± 2.07 74.21± 1.57 69.64± 1.99
MSE CE 68.62± 2.89 80.17± 1.93 75.36± 3.75
SSIM CE 69.66± 2.04 80.86± 1.41 76.82± 2.10
SSIM GDice 69.09± 2.08 80.51± 1.39 75.72± 2.39
SSIM RMI 71.26± 1.59 81.88± 1.12 80.07± 1.12

PRIME-FP20

N/A N/A 26.72± 3.91 41.78± 4.69 34.26± 5.20
MSE CE 36.15± 5.02 52.91± 5.26 44.10± 5.84
SSIM CE 36.98± 4.40 53.76± 4.39 45.32± 5.42
SSIM GDice 35.41± 5.01 52.18± 5.06 43.30± 6.31
SSIM RMI 41.16± 3.41 57.58± 3.38 52.37± 4.12

4.2 Ablation study
4.2.1 Ablation for proxy strategy
In this section, we explore two aspects of the proxy strategy,
1) what kinds of losses would be better? 2) do we need

to take two sub-tasks for the proxy task? To prove the
effectiveness, we conduct the ablation experiments on two
modalities of vessel segmentation datasets, including the
HRF and PRIME-FP20 datasets. We set the upscale rate as 2.
That is to say, the input size for the two datasets is 876×584
and 704×648 respectively, and the output size is 1752×1168
and 1408× 1296.

For the first aspect, we explore two different strategies
for the proxy loss to make an implicate supervision: 1) the
same loss as that of sub-tasks; 2) more restrictive losses, such
as region-based loss. For the second strategy, we use the
structure similarity (SSIM) loss, region mutual information
(RMI) [44] loss or generalized dice loss (GDice) for task
interaction module. As described in Table 2, both strategies
can significantly improve the performance of the model,
compared with the baseline model U-Net [45] without proxy
tasks. For our first strategy, when MSE and CE are used as
the losses of the proxy task, the IoUs of HRF and PRIME-
FP20 are 7.5% and 9.5% higher. After using more restrictive
losses, SSIM and RMI, for the proxy task, the improvement
of IoUs on HRF and PRIME-FP20 datasets are more than
10% and 14%. The evaluation metrics of MCC and BM
see the same rise. The view field of PRIME-FP20 is ultra-
wide, whose vessel proportion is only 2.54% relatively small
compared with other vessel segmentation datasets, so it can
be supposed that the GDice loss may excessively punish the
background. Thus, we adopt SSIM and RMI for the proxy
loss in the following experiments.

For the second aspect, we use one sub-task loss or two
sub-task losses for proxy loss. As shown in Table 3, x
means without using the corresponding proxy loss, ✓means
using the corresponding proxy loss. Compared with the
first rows based on two datasets, adding one or two losses
to constrain the task interaction significantly improves the
performance. Adding SSIM for proxy loss improves the
segmentation performance, as the segmentation task can
learn more information from the backward of the feature
interaction module. The IOU after adding the RMI loss is
more than 9.5% or 14.2% higher than that without proxy loss
or just adding the SSIM loss, as the shared feature extraction
module can be guided to extract more features focusing
on the segmentation target, which intuitively achieves bet-
ter performance. Moreover, applying proxy loss for both
segmentation and super-resolution tasks further improves
the segmentation performance, BM with 18% higher on
the PRIME-FP20 dataset. Thus, the proxy task loss for
our proposed shared feature extraction module improves
the segmentation performance. More statistical analysis is
added in Appendix D.

4.2.2 Ablation study for the proposed MSCG
The main components of the MSCG are our proposed
MRCAB and MS-Conv. The ablation studies about the two
elements are analyzed in this section.

MRCAB: To verify the validation of our MRCAB, we
use the original RCAB to replace it and do the experiments
on the HRF dataset, as shown in Table 4. Our module can
get a slight performance improvement, which means our
module may extract the channel relation better than the
original structure. We also conduct the experiments that
add the global average pooling to the block to statistic the
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TABLE 3
Results for ablation study of pretext loss functions of our proposed

model on HRF and Prime-fp20 datasets (mean± std). The ∗

represents a p-value< 0.05, which indicates significantly different
results are obtained. More details are shown in Appendix D.1.

Dataset Loss IoU(%) MCC(%) BM(%)SR Seg

HRF

x x 61.12± 2.07 74.21± 1.57 69.64± 1.99
✓ x 68.79± 1.92 80.33± 1.36 75.12± 1.73
x ✓ 70.56± 1.98 81.35± 1.39 79.73± 1.78
✓∗ ✓ 71.26± 1.59 81.88± 1.12 80.07± 1.12

PRIME-FP20

x x 26.72± 3.91 41.78± 4.69 34.26± 5.20
✓ x 35.14± 5.07 51.88± 5.16 43.00± 6.62
x ✓ 40.98± 3.24 57.48± 3.19 51.56± 3.94
✓ ✓ 41.16± 3.41 57.58± 3.38 52.37± 4.12

global information, as shown in the second line of Table 4.
When adding the global pooling, the performance dropped,
which means only capturing the channel relationship by the
squeeze and excitation operation is enough when using the
depthwise convolution. The metric BM is slightly dropped
when using our method. The possible reason is that our
algorithm may trend to classify some background to the
foreground target, but from the MCC we can see that our
approach gets more accurate results compared to RCAB.

TABLE 4
Ablation study for the modified residual channel attention block based

on HRF dataset (mean±std), we adopt the RCAB to replace our
MRCAB. The gpool means global average pooling. The ∗ represents a

p-value< 0.05, which indicates significantly different results are
obtained. More details are shown in Appendix D.2.

Model IoU(%) MCC(%) BM(%)

RCAB 71.12± 1.72 81.75± 1.24 80.31± 0.95
Ours(w/ gpool) 70.76± 1.31 81.60± 0.92 78.40± 0.94

Ours(w/o gpool)∗ 71.26± 1.59 81.88± 1.12 80.07± 1.12

MS-Conv: The proposed MS-Conv extracts the spatial corre-
lation of the features by utilizing the multiple-scale context.
Thus, we analyze two aspects of the MS-Conv, including its
multi-scale feature extraction ability and the effectiveness of
depthwise convolution. Multi-scale feature extraction ability:
To verify the effectiveness of our MS-Conv, we use two
other similar modules to replace the MS-Conv in MSCG,
including ASPP [46], [47] and self-attention module that
extracts spatial information (abbreviated as Self-Att). As
shown in Table 5, our MS-Conv outperforms the ASPP and
Self-Att on the HRF dataset, and its standard deviation
values are relatively smaller. That is to say, our MS-Conv
extracts multi-scale features helpful for target segmentation
with relatively higher stability.

Effectiveness of Components: MS-Conv adopts 1× 1 Conv,
image pooling, and depthwise convolution to extract multi-
scale features from integrated information. We analyze their
effectiveness one by one. As shown in Table 6, DW is
short for depthwise convolution, and we analyze MS-Conv
with/without DW. MS-Conv with depthwise gives out a
better performance than only using convolution without
DW. As the MS-Conv adopts 1× 1 Conv and image pooling
to extract features from different groups, we demonstrate
their necessity by using depthwise convolution substitution.
The results tell that MS-Conv without 1× 1 Conv or image

pooling degrades the segmentation performance, and their
standard deviation values increase, which means they ef-
fects the performance of stability. Thus, our MS-Conv, using
1 × 1 Conv, image pooling, and depthwise convolution, is
helpful to dig multi-scale features to improve the accuracy
and stability performance of segmentation.

TABLE 5
Ablation study for multi-scale feature extraction modules based on HRF

dataset (mean ± std). Atrous spatial pyramid pooling (ASPP),
self-attention module (Self-Att) are used to compare with our

Multi-Spatial Convolution (MS-Conv).The ∗ represents a
p-value< 0.05, which indicates significantly different results are

obtained. More details are shown in Appendix D.2.

Module IoU(%) MCC(%) BM(%)

ASPP 70.97± 1.63 81.66± 1.12 80.13± 2.08
Self-Att 70.06± 2.17 81.12± 1.44 77.71± 2.96

MS-Conv(Ours)∗ 71.26± 1.59 81.88± 1.12 80.07± 1.12

TABLE 6
Experiments of the MS-Conv components. We gradually evaluate their

affects in the MS-Conv layer (mean ± std).

Counterpart IoU(%) MCC(%) BM(%)
1× 1 Conv Image pooling DW

x x ✓ 71.00± 2.20 81.67± 1.59 79.94± 1.50
✓ x ✓ 70.63± 2.18 81.44± 1.47 79.41± 3.01
x ✓ ✓ 71.06± 1.98 81.75± 1.33 79.77± 2.53
✓ ✓ x 70.85± 1.72 81.60± 1.23 79.33± 1.05
✓ ✓ ✓ 71.26± 1.59 81.88± 1.12 80.07± 1.12

4.2.3 Ablation study for the framework
Our framework consists a semantic segmentation stream, a
shared feature extraction module (MSCG as an instance),
and a super-resolution stream. U-Net is adopted as the
baseline of segmentation. We compare U-Net, U-Net with
extra interpolation (U-Net+Inter), U-Net+Inter with super-
resolution (U-Net+Inter+SR), and our proposed framework
(U-Net+Inter+SR+MSCG). For the segmentation stream, we
adopt an extra interpolate operation to produce the same
size of the output as that of the high-resolution target.
We conduct the ablation study on these components and
different scales. The ablation study is based on HRF and
PRIME-FP20 datasets, whose output resolutions are set as
1752 × 1168 and 1408 × 1296, respectively. In the experi-
ments, different upscale rates are conducted. That is to say,
the input size equals W/upscale rate × H/upscale rate
(W and H are output resolutions). As shown in Fig. 4,
IoU, BM, and MCC of different upscale rates by different
combinations. Only adding interpolation cannot bring a
gain for the segmentation performance or even cause a
drop, as there is no extra useful information for segmen-
tation. The segmentation performance after adding a super-
resolution stream improves, as super-resolution can provide
some information for target segmentation. After adding our
MSCG, the segmentation accuracy further improves, as the
shared features extracted by our MSCG are helpful for the
target segmentation. Moreover, the higher upscale rates pro-
duce larger improvements in segmentation. The standard
deviations for the PRIME-FP20 datasets seem slightly large,
limited by the small number of images in the dataset with
only 15 images.

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3322735

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 9

H
RF

(a) (b) (c)

PRIM
E-FP20

(d) (e) (f)

Fig. 4. Ablation study of framework components with different upscale rates based on HRF and PRIME-FP20. The first column is the trends for the
IoU, second column is the trends for BM, and the last column is the results for MCC.

4.3 Comparison Experiments
To evaluate the effectiveness of our framework, we con-
duct comparison experiments based on 6 datasets in three
different scenarios, including vessel segmentation, lesion
segmentation, and natural image segmentation.

4.3.1 Vessel segmentation task
We employ U-Net [45] as the base model to build our frame-
work. We compare our method with other 9 state-of-the-art
methods including 6 single-dual segmentation methods (U-
Net, SCS-Net [2], SA-UNet [16], DE-DCGCN-EE [48], Skel-
Con [3], and Little W-Net [15]) and 3 dual-stream learning
methods ( SuperVessel [23], CogSeg [21] and SS-MAF [24]).
The experiments are based on three datasets, including HRF,
PRIME-FP20, and FIVES. We conduct the experiments five
times, and the results are listed with mean ± std of metrics
Dice, IoU, MCC, and BM. We also list the floating-point
operations per second (FLOPs) to compare the computation
cost.

As shown in Table 7, a dual-stream learning framework
with a feature interaction module produces the best seg-
mentation accuracy for three datasets. Among them, the
SuperVessel and SS-MAF are also proposed by our group
according to this idea. Compared with single-stream seg-
mentation algorithms, all the dual-stream learning frame-
works improve the segmentation accuracy greatly, for ex-
ample, the IoU of our framework is about 10% higher
on HRF, 15% higher on PRIME-FP20 and 12% higher on
FIVES than that of U-Net. Compared with other dual-stream
learning frameworks, ours provides higher accuracy and
lower standard deviation, which means that our algorithm
can be more stable. For the PRIME-FP20 dataset, the image
number is very small with only 15 images, and the IoU
of CogSeg is only about 26%, about 15% lower than ours,

which illustrates that the performance of CogSeg is affected
by the size of the dataset, but our framework can overcome
this problem to some extent.

The qualitative results of the three datasets are shown
in Fig. 5. We can observe that our framework segments
the vessels more accurately, and precisely locate the ves-
sel edges. Compared with the single-stream segmentation
methods (U-Net, SCSNet, SA-UNet, and DE-DCGCN-EE),
dual-stream frameworks obtain more accurate and smooth
boundaries. But the methods like CogSeg, which optimizes
the similarity distance between segmentation features and
super-resolution features, opt to misclassify the vessels,
especially for the tiny vessels. Shared feature extraction
integrated dual-stream frameworks (SuperVessel, SS-MAF,
and our proposed MSCG-integrated framework) segment
the vessel edge more accurately and alleviate the misclas-
sification problem caused by vessel similarity. As shown in
Fig. 5 (b), our framework discriminates the vessels better.
For example, in the PRIME-FP20 dataset with large view
field images, the proportion of vessels is extremely small,
and our framework segments tiny vessels precisely.

4.3.2 Lesion segmentation task

We conduct lesion segmentation tasks based on two multi-
lesion segmentation datasets, including IDRID [39] and
DDR [40] datasets. We employ U-Net [45] and DeepLabV3+
[47] as the backbone of our framework, which also proves
that our framework can be suitable for different back-
bones. The comparison methods include U-Net [45] and
DeepLabV3+ [47] as the backbone of our framework. The
U-Net++ [49], DenseUNet [50], DeepLabV3+, FCRN [51],
CASENet [52], L-Seg [53], PMCNet [54] and SS-MAF [24].
We use mDice, mIoU, and mAUC as the evaluation metrics.
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Fig. 5. Visualization results of our proposed method and other state-of-the-art methods on HRF, PRIME-FP20, and FIVES datasets. Green and red
markings denote ground truth and segmentation output, respectively. The yellow marking represents the correct prediction of the retinal vessel. (a)
Visualization of the samples on the HRF dataset; (b) Visualization of the examples on the PRIME-FP20 dataset; (c) Visualization of the examples
on the FIVES dataset.(Please zoom in for a best view.)

As shown in Table 8, dual-stream learning frameworks
give out much higher accuracy than single-stream lesion
segmentation algorithms. For example, compared with the
DeepLabV3+, our framework obtains about 10% and 5%
higher mIoU for IDRiD and DDR datasets, respectively.
SS-MAF is another of our proposed dual-stream learning
frameworks with feature interaction, proving our proposed
thinking of shared feature extraction is right. The categories
of the DDR dataset are extremely imbalanced, which often
causes the optimization to be difficult and easy to misclas-
sify. This is the reason that the accuracy of the DDR dataset
is relatively lower.

We visualize the results of two benchmarks and show
some samples in Fig. 6. The figure tells that our method
discriminates the boundaries better. Compared to the base
model U-Net, the models trained by our framework classify
the lesion more precisely with smooth edges. For example,
on the IDRID dataset, the base model U-Net trends to mis-
classify the hard exudate (EX) as the soft exudate (SE), but
the U-Net trained in our framework overcomes this prob-
lem and provides the correct classification. One interesting
phenomenon is that the trained DeepLabV3+ based on our
framework seems to inherit the misclassification for the HE,
but the accuracy of our segmented lesion edges is better than
that of the base DeepLabV3+. The possible reason is that the
super-resolution brings the shape or geometry information,
which may enhance the boundary of the lesions, but can
not provide a rich semantic context for the classification.
The structure of the model determines that U-Net fuses
the semantic context by the skip connection of high-level
and low-level features, but DeeplabV3+ obtains less context
information in the decoder.

4.3.3 Cityscape segmentation task
To evaluate the generalization of our framework, we con-
duct the comparison experiment on Cityscapes [41] dataset,
whose proportion of segmentation target is considerable. We
choose the DSRL [18] as the comparison framework based
on dual-stream super-resolution semantic learning. We use
ESPNetV2 and DeeplabV3+ as the base model to build

our framework. The GDice [55] and SSIM are used as the
proxy loss for semantic segmentation and super-resolution,
respectively. For DeeplabV3+, we use ResNet101 as the
backbone to extract the features, and the weights trained on
the ImageNet to initialize the backbone for DeeblabV3+ and
ESPNetV2. We list the accuracy of validation and test and
the GFLOPs. The GFLOPs are calculated when the input size
is 1024 × 512. The quantitative results are shown in Table
9. We can see that our framework can work well on the
cityscape scene. Compared with the DeeplabV3+ baseline
and DSRL-integrated framework, our framework obtains
3.6% and 1.6% for the validation set, 3.7% and 1.5% for the
test set, with degrading GFLOPs.

4.4 Out of distribution experiments

We try to conduct experiments under the condition of out-
of-distribution (OOD), which also reflects the robustness of
the trained model based on our proposed framework. For
the vessel segmentation task, we introduce another dataset
named DRHAGIS [60] as the extra dataset to evaluate the
model trained on HRF and FIVES. The performance in the
OOD scenery is significant for clinical applications, and the
cross-dataset experiments are to simulate the OOD scenery
that the data from different clinics. We report the Dice and
MCC for the vessel segmentation task. For the lesion seg-
mentation task, we only report the Dice, as the MCC is not
suitable to evaluate the performance of lesion segmentation.
For comparison methods, we adopt U-Net, CogSeg, Super-
Vessel, and SS-MAF for the vessel segmentation task, U-Net,
SS-MAF, and DeeplabV3+ for the lesion segmentation task.

As shown in Table 10, the first column is the dataset
we train the models, and the second column is the dataset
used for the test. The FIVES dataset holds a large number
of images (800 images in total), and all the trained models
work relatively robustly on other test datasets. For the HRF
dataset with less of images, our framework provides robust
performance. For example, U-Net and SS-MAF trained on
the HRF dataset only produce about 14% and 19% Dice
on the FIVES dataset, but our framework gives about 46%
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TABLE 7
Comparison results for vesseel segmentation task. On HRF and PRIME-FP20 datasets, the input images size of SCSNet, SA-UNet and

DE-DCGCN-EE are set as 1024× 1024, 1024× 1024 and 800× 800, respectively (according to the original paper). On FIVES dataset, GLOPs are
calculated based on the input size of 512× 512. The ∗ represents a p-value< 0.05, which indicates significantly different results are obtained.

More details are shown in Appendix D.3.

Dataset Model Dice IoU MCC BM GFLOPs

HRF

U-Net 75.85± 1.57 61.12± 2.07 74.21± 1.57 69.64± 1.99 384.49
SCSNet 74.15± 1.77 58.95± 2.28 72.44± 1.79 67.39± 1.87 342.22

SA-UNet 75.73± 1.78 60.98± 2.35 73.91± 1.77 71.11± 2.58 51.15
DE-DCGCN-EE 71.55± 2.25 55.75± 2.78 69.56± 2.13 65.48± 3.50 721.31

SkelCon - - 79.15 - -
Little W-Net 81.03 - 79.09 - -

CogSeg 80.14± 1.07 66.87± 1.48 79.07± 1.03 72.45± 1.82 384.49
SuperVessel 81.62± 1.49 68.98± 2.13 80.42± 1.43 75.70± 2.49 388.23

SS-MAF 82.87± 0.90 70.76± 1.31 81.60± 0.92 78.40± 0.94 384.49
Ours∗ 83.21± 1.08 71.26± 1.59 81.88± 1.12 80.07± 1.12 384.49

PRIME-FP20

U-Net 42.05± 4.94 26.72± 3.91 41.78± 4.69 34.26± 5.20 346.23
SCSNet 55.97± 2.85 38.92± 2.75 55.17± 2.79 50.69± 3.37 342.22

SA-UNet 45.60± 20.13 31.43± 14.54 43.81± 22.09 41.57± 21.65 51.15
DE-DCGCN-EE 49.45± 2.71 32.89± 2.41 48.65± 2.67 43.33± 2.76 721.31

CogSeg 41.55± 2.36 26.25± 1.87 42.90± 2.06 32.46± 4.99 346.23
SuperVessel 52.74± 4.47 35.94± 4.11 52.77± 4.36 43.78± 4.63 345.67

SS-MAF 57.86± 2.82 40.77± 2.80 57.45± 2.52 50.78± 4.27 346.23
Ours∗ 58.25± 3.40 41.16± 3.41 57.58± 3.38 52.37± 4.12 346.23

FIVES

U-Net 83.86± 0.08 72.21± 0.11 82.66± 0.08 81.40± 0.28 196.54
SCSNet 82.77± 0.15 70.61± 0.21 81.50± 0.17 80.03± 0.23 85.55

SA-UNet 78.83± 0.85 65.06± 1.16 77.27± 0.84 81.37± 1.05 12.79
DE-DCGCN-EE 83.61± 0.07 71.84± 0.11 82.42± 0.07 80.54± 0.29 295.45

CogSeg 86.68± 1.05 76.51± 1.63 85.73± 1.09 83.55± 1.72 198.77
SuperVessel 92.10± 0.04 85.36± 0.07 91.52± 0.04 90.02± 0.10 198.46

SS-MAF 92.07± 0.05 85.30± 0.08 91.47± 0.05 90.59± 0.13 198.77
Ours∗ 91.83± 0.03 84.90± 0.04 91.22± 0.03 90.15± 0.14 198.77

TABLE 8
Comparison results for lesion segmentation task. The ∗ represents a

p-value< 0.05, which indicates significantly different results are
obtained. More details are shown in Appendix D.4.

Dataset Model mDice(%) mIoU(%) mAUC(%)

IDRiD

U-Net 33.44± 3.97 22.39± 3.49 41.34± 2.83
U-Net+ 38.81± 1.60 27.14± 1.27 47.86± 4.27

DenseUNet 18.41± 2.86 11.67± 2.21 22.84± 3.12
DeepLabV3+ 40.99± 1.35 28.56± 1.34 48.98± 2.28

FCRN - - 45.52
CASENet - - 48.23
PMCNet 38.39± 0.61 27.24± 0.47 55.50± 0.74
SS-MAF 48.63± 1.95 33.96± 1.51 51.19± 2.31

U-Net(Ours)∗ 50.70± 2.34 35.42± 2.08 56.02± 3.33
DeepLabV3+(Ours)∗ 54.13± 1.53 38.82± 1.32 59.08± 2.14

DDR

U-Net 29.40± 2.08 18.16± 1.38 31.71± 2.83
U-Net++ 29.73± 1.55 18.44± 1.00 32.88± 0.91

DenseUNet 19.53± 4.36 11.55± 2.71 22.65± 0.92
DeepLabV3+ 32.80± 0.79 20.91± 0.66 34.12± 0.67

FCRN - - 9.60
CASENet - - 19.28

L-Seg - - 32.08
PMCNet 22.70± 0.30 15.89± 0.25 29.28± 3.20
SS-MAF 40.05± 0.33 25.59± 0.27 36.56± 1.20

U-Net(Ours)∗ 37.53± 1.67 23.52± 1.35 35.13± 0.86
DeepLabV3+(Ours) 39.69± 1.27 25.76± 0.98 35.60± 1.61

Dice. The Dices of CogSeg, which trains on HRF and tests
on FIVES or DRHAGIS, are about 18% and 22% lower
than those of our framework. For the lesion segmentation
task, our framework with U-Net or DeeplabV3+ as back-
bones produces the highest accuracy. Therefore, compared
with single-stream lesion segmentation models, dual-stream
models provide higher robustness for OOD problems.

TABLE 9
Comparison results for the Cityscapes dataset. The GFLOPs is

calculated when the input size is 1024× 512.

Model Val(%) Test(%) GFLOPs

FCN [56] - 65.3 1335.60
ENet [57] - 58.3 7.24

ESPNet [27] - 60.3 8.86
ERFNet [58] - 68.0 25.60

PSPNet(ResNet18(1.0)) [59] - 67.6 512.80
ESPNetV2 [28] 64.5 65.1 5.85

ESPNetV2(DSRL) [18] 66.5 65.9 5.85
ESPNetV2(Ours) 66.8 64.4 5.85
DeeplabV3+ [47] 70.0 67.1 565.35

DeeplabV3+(DSRL) [18] 72.0 69.3 568.53
DeeplabV3+(Ours) 73.6 70.8 565.83

5 DISCUSSION

The experiments based on 6 publicly available datasets for 3
types of tasks show that our method can work on both med-
ical image and natural image scenarios. The RoI proportion
of the former is relatively small, and that of the latter is
very large. As the resolution of input images is relatively
low, our framework still achieves a promising performance.
But during experiments, we find several limitations in our
framework. The first is about the standard deviation. The
values of our framework in this paper are a little larger
than our previous model SS-MAF, which means the stability
of our structure is a little inferior to that of SS-MAF. We
hypothesize that the SSIM loss function giving one strong
supervision signal for super-resolution may disturb parts of
segmentation results. As the figure 7 shows, if the area is

This article has been accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TPAMI.2023.3322735

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 12

Fig. 6. Visualization of the results on IDRID and DDR dataset. Red, green, blue, and pink markings denote Hard Exudate(EX), Haemorrhages (HE),
Microaneurysms, and Soft Exudate (SE), respectively. (a) Visualization of the IDRID dataset; (b) Visualization of the DDR dataset. (Please zoom
in for a best view.)

TABLE 10
Results for out of distribution experiments. The train means the training

dataset, test means the testing dataset. (Mean ± Std)

Train Test Model Dice MCC

FIVES HRF

U-Net 45.52± 0.16 42.06± 0.14
CogSeg 50.00± 0.65 46.73± 0.82

SuperVessel 54.35± 0.07 51.71± 0.10
SS-MAF 54.37± 0.08 51.58± 0.06

Ours 54.26± 0.18 51.50± 0.21

HRF FIVES

U-Net 14.31± 3.76 24.99± 3.46
CogSeg 28.27± 5.53 37.72± 4.31

SuperVessel 36.11± 1.74 44.46± 1.33
SS-MAF 19.59± 4.14 30.28± 3.39

Ours 46.04± 2.70 52.02± 2.03

FIVES DRHAGIS

U-Net 61.62± 0.12 60.32± 0.15
CogSeg 61.94± 1.34 61.55± 1.08

SuperVessel 67.65± 0.21 66.56± 0.22
SS-MAF 67.73± 0.20 66.71± 0.22

Ours 67.65± 0.10 66.61± 0.09

HRF DRHAGIS

U-Net 45.98± 4.48 45.11± 4.99
CogSeg 31.86± 4.32 32.40± 3.92

SuperVessel 53.43± 6.19 52.50± 6.22
SS-MAF 53.97± 4.67 52.90± 4.79

Ours 53.69± 6.46 52.69± 6.33

IDRID DDR

U-Net 13.86± 7.41 -
SS-MAF 24.96± 1.19 -

U-Net(ours) 25.67± 1.43 -
DeeplabV3+ 21.38± 1.93 -

DeeplabV3+(Ours) 23.33± 1.16 -

DDR IDRID

U-Net 18.96± 1.09 -
SS-MAF 32.70± 2.49 -

U-Net(ours) 30.26± 3.11 -
DeeplabV3+ 26.44± 1.97 -

DeeplabV3+(Ours) 34.95± 1.24 -

vague, the two targets may adhesion due to the information
brought by the super-resolution.

Moreover, the proposed way is to guide learning the
shared features between tasks with optimization methods,
such as maximizing the mutual information between tasks.
In the future, we can explore more effective structures to
capture shared information, such as the self-attention mech-
anism at the multi-axis or the combination of global and
local information.

Fig. 7. Failure examples. Input image, ground-truth, and our results.

6 CONCLUSION

As the proportions of target areas in medical image seg-
mentation are relatively small, the existing dual-stream
framework based on the similarity loss may collapse or
cannot achieve the desired performance. After rethinking
the segmentation ability in the dual-stream framework, we
identified its limitations applied to medical image segmen-
tation. We proposed a Dual-Stream Shared Feature (DS2F)
framework based on the hypothesis that a small set of
features is shared between tasks. We proposed a novel
shared feature extraction module and defined proxy tasks
to constrain the module learning in the DS2F framework.
Extensive experiments on six publicly available datasets,
including medical and nature scenes, verify the effectiveness
of our proposed framework.
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