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Abstract

UAV tracking is an emerging task and has wide potential applications in such as
agriculture, navigation, entertainment and public security. However, the limita-
tions of computing resources, battery capacity, and maximum load of UAV hin-
der the deployment of DL-based tracking algorithms on UAV. In contrast to deep
learning trackers, discriminative correlation filters (DCF)-based trackers stand out
in the UAV tracking community because of their high efficiency. However, their
precision is usually much lower than trackers based on deep learning. Model com-
pression is a promising way to narrow the gap (i.e., effciency, precision) between
DCF- and deep learning- based trackers, which has not caught much attention in
UAV tracking community. In this paper, We propose the P-SiamFC++ tracker,
which is the first to use rank-based filter pruning to compress the SiamFC++
model, achieving a remarkable balance between efficiency and precision. Our
method is general and may encourage further studies on UAV tracking with model
compression in the future. Extensive experiments on four UAV benchmarks, in-
cluding UAV123@10fps, DTB70, UAVDT and Vistrone2018, show that P-SiamFC++
tracker significantly outperforms state-of-the-art UAV tracking methods.
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1. Introduction

With the deployment of unmanned aerial vehicles (UAVs) in numerous indus-
tries recently, unmanned aerial vehicle (UAV)-based tracking emerges as a new
challenge and has drawn increasing interest in visual tracking. It has wide poten-
tial applications in such as agriculture, navigation, transportation, aircraft track-
ing, public security, autonomously landing, aerial refueling, disaster response, and
etc. [1, 2, 3, 4, 5, 6, 7, 8, 9]. However, UAV tracking is not an easy thing and is
even more difficult than general visual tracking since it faces more onerous chal-
lenges than in general scenes. On the one hand, motion blur, severe occlusion,
extreme viewing angle, and scale changes have greatly challenged the precision
of the UAV tracking algorithms. Among them, motion blur and scale changes are
quite likely to occur when a drone flies very fast, causing the scene, the target
appearance, and the target scale to significantly vary throughout a single camera
exposure; while severe occlusion and extreme viewing angle are more of a phe-
nomenon when the targets are captured from cameras onboard UAVs flying high
in the sky. On the other hand, limited computing resources, low power consump-
tion requirements, battery capacity limitations, and UAV’s maximum load pose a
big challenge to its efficiency as well [10, 4, 6].

At the current level of technology, efficiency is a fundamental problem of UAV
tracking, since the limitations due to restricted resources onboard UAVs is very
difficult to surmount without great progress in other fields. Therefore, discrimina-
tive correlation filters (DCF)-based trackers, thanks to the fast Fourier transform
(FFT) [11, 12, 10], are usually preferred instead of deep learning (DL)-based
trackers [4, 13, 6, 7, 14, 8, 15, 9]. Although tracking precisions of DCF-based
trackers have been greatly improved, they are still not comparable to most state-
of-the-art DL-based trackers. Very recently, Cao et al. [5] proposed an efficient
and effective deep tracker for UAV tracking, which used a lightweight backbone
for consideration of efficiency and utilized a hierarchical feature transformer to
achieve interactive feature fusion of shallow layers and deep layers for robust rep-
resentation learning [5]. This tracker, although having not yet achieved real-time
tracking on a single CPU, has achieved a good balance between efficiency and
precision and demonstrated state-of-the-art performance in UAV tracking, which
suggests that an effective lightweight DL-based tracker may be a good alternative
to a DCF-based tracker. We are thus inspired to exploit model compression to
narrow the gap between DCF- and deep learning- based UAV trackers.
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Figure 1: Comparing our method with CPU-based trackers and deep trackers in terms of precision
and tracking speed (fps) on CPU and GPU, respectively.

Model compression is a technique usually used to deploy state-of-the-art deep
networks in low-power and resource-constrained edge devices without compro-
mising much on models’ accuracy [16]. Popular and widely studied methods
for model compression [17] include pruning, quantization, low-rank approxima-
tion, knowledge distillation, and etc. In this paper, we exploit the rank-based
filter pruning method proposed in [18], which is efficient and straightforward, to
compress the SiamFC++. We hence name the proposed method P-SiamFC++.
The pruning method we used is very straightforward and training-efficient since it
eliminates the need of introducing additional constraints and retraining the model.
SiamFC++ is based on the efficient tracker SiamFC and shows state-of-the-art
performance in both precision and speed by introducing a regression branch and
a center-ness branch. To the best of our knowledge, we are the first to effectively
use model compression to narrow the gap between DCF- and deep learning- based
trackers in UAV tracking. We achieve a remarkable balance between efficiency
and precision compared with existing CPU-based and DL-based trackers.We be-
lieve our work provides a fresh perspective for solving UAV tracking and will
attract increasing attention in the UAV tracking community to this approach. Our
contributions can be summarized as follows:

• We are the first to introduce model compression to UAV tracking to the
best of our knowledge, which narrows the gap between DCF-based and
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DL-based trackers. Surprisingly, the proposed method can improve both
efficiency and tracking precision. The significant yet unexpected increase
of the compressed model over the original one may encourage more work
on this method.

• We propose the P-SiamFC++ tracker to exploit rank-based filter pruning
for compressing the SiamFC++ model, achieving a remarkable balance be-
tween tracking efficiency and precision. Our method is general, real-time,
and provides a fresh perspective to solve UAV tracking.

• We demonstrate the proposed method on four UAV benchmarks. Experi-
mental results show that the proposed P-SiamFC++ tracker achieves state-
of-the-art performance.

The rest of this paper is organized as follows. Section 2 gives an overview of
the prior work relevant to this work. Section 3 describes the proposed method.
In Section 4, we provide description and results of the performed experiments.
Conclusions are finally given in Section 5.

2. Related Works

This paper extends our work [19]. In this paper, we improve the realization
of the previous version and additionally perform a comprehensive analysis of the
rank-based filter pruning for real-time UAV tracking. We extend our P-SiamFC++
by investigating block-wise pruning ratios, based upon which we can choose a bet-
ter balance between tracking precision and efficiency. This enhancement enables
us to obtain state-of-the-art real-time trackers, with an average speed above 70FPS
on a single CPU. Note that the previous and the enhanced version are denoted by
P-SiamFC++(v1) and P-SiamFC++(v2), respectively.

2.1. Visual Tracking Methods
Visual tracking is a fundamental task in computer vision. Nowadays, aca-

demics have presented a variety of novel tracking approaches in order to achieve
performance perfection. Roughly speaking, modern trackers can be divided into
two classes: DCF-based trackers and DL-based ones. DCF-based trackers start
with a minimum output sum of squared error (MOSSE) filter [20]. After that,
DCF-based trackers have made great progress in many variants by introducing
kernel trick, discriminative scale estimation, continuous convolution, spatial and
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temporal regularizations, training set management, deep features, attention, con-
text and background information and so on [21, 10, 22, 23, 24]. Since DCF-based
trackers usually use handcrafted features and can be calculated in the Fourier do-
main, they can achieve competitive performance with high efficiency. This is why
they stood out in UAV tracking community given efficiency is a fundamental issue.
However, they hardly maintain robustness under challenging conditions because
of the poor representation ability of handcrafted features.

Thanks to the great success of deep learning, its application in visual tracking
has proven to be very successful in recent years and it has significantly improved
the precision and robustness of many trackers. As one of the pioneering works,
SiamFC [25] considered visual tracking as a general similarity-learning problem
and took advantage of the Siamese network to measure the similarity between tar-
get and search image. Since that, many DL-based trackers are based on Siamese
architectures. Recently, the Siamese-based trackers are mainly divided into two
categories, i.e., anchor-based and anchor-free trackers [26]. Regarding anchor-
based methods, SiamRPN [27] applied a region proposal network (RPN) into
Siamese networks and considered tracking as two subtasks performed by a clas-
sification and a regression branch; DaSiamRPN [28] proposed a distractor-aware
module and an effective sampling strategy; SiamMask [29] added a new branch
to produce a pixel-wise binary mask. More recently, deeper architectures are ex-
plored in such as SiamDW [30] and SiamRPN++ [31] to further improve track-
ing precision, but the efficiency is sacrificed largely. As to anchor-free trackers,
SiamFC++ [32] introducing a novel quality assessment branch in classification is
a simple but powerful framework, based upon which SiamCAR [33] achieved an
impressive performance by redesigning a novel anchor-free structure and merging
multi-layers features. Besides, SiamBAN [34] explores a new strategy of gen-
erating classification labels and regression targets. In addition to Siamese-based
trackers, there are many DL-based trackers extending online discriminative frame-
work with deep networks for end-to-end training, e.g., ATOM [35], DiMP [36],
KYS [37] and KeepTrack [38].

Although deeper architectures have been developed to further improve track-
ing precision recently, the efficiency is sacrificed to a large extent. In contrast,
SiamFC++ [32] is a simple but powerful framework that proposed an effective
quality assessment branch to improve precision. Unfortunately, despite its excel-
lent GPU speed, it cannot reach real-time speed (i.e., ⩾ 30 FPS) on a single CPU.
In this paper, we aim to improve the efficiency of SiamFC++ for real-time UAV
tracking [32] using model compression techniques.
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2.2. Model Compression by Pruning
In general the goal of model compression is to achieve a simplified model

without significantly reducing the accuracy of the original model [16]. Pruning
is a commonly used neural network compression technique that explores the re-
dundancy in model weights and tries to remove/prune redundant and non-critical
weights, which involves removing connections between neurons or entire neu-
rons, channels, or filters from a trained network [18]. Pruning has been applied
since the 1980s, but has seen an explosion of interest in the past decade thanks to
the thriving of deep neural networks and their deployment to resource-constrained
environments [16, 39]. Conventionally, a pruning pipeline is comprised of three
steps: pretraining, pruning and finetuning. And there are four classic topics in-
volved in the pipeline: pruning structure, pruning ratio, pruning criterion, and
pruning schedule [17]. Pruning structure can be divided into two types: unstruc-
tured (weight) pruning and structured (filter) pruning. The former involves re-
moving individual weights or neurons, which, however, is hard to leverage for
acceleration on general-purpose hardware [39]. While the latter involves remov-
ing entire channels or filters, much easier to achieve considerable acceleration
because of the regular arrangement of weights [18]. Pruning ratios indicate how
many weights to remove. In general, there are two ways to adjust pruning ratio.
The first is to pre-define one global ratio or many layer-wise ratios. The second
approach is to adjust the pruning ratio indirectly, such as using a regularization-
based pruning method, which removes weights by pushing them to zero with a
penalty term. However, it demands much engineering tuning to achieve a specific
ratio or group of ratios [40, 41]. Pruning criterion is used to select which weights
to prune. For weight pruning, weight magnitude is the most simple criterion [42].
As to filter pruning, Frobenius norm (typically L1-norm and L2-norm) of a filter
[43], sparsity of the filter response [44], and scaling factor of the Batch Normal-
ization layer [45] are frequently used criteria. Besides, the idea of selecting the
weights that induce the least loss increase and its variant are often practiced as well
[46, 47]. Pruning schedule specifies how the network sparsity goes from zero to a
target number, which has two typical choices [17]: (1) in a single step (one-shot),
then finetune [18, 46], (2) progressively, pruning interleaved with training [48].
Although the progressive manner might outperform the one-shot way since more
time is available for training, the latter is more efficient in training and frees one
from designing complicated training strategy.

Overall, pruning remains an open problem so far. The HRank proposed re-
cently in [18] is an effective and efficient filter pruning method that using the
rank of the feature map in each layer as the pruning criterion and is scheduled in
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Figure 2: Our P-SiamFC++ pipeline. The pipeline is basically the same as that of SiamFC++.
The difference lies in the pruned filters and feature maps. Note that the subsequent architectures
connected to the head are neglected here since no pruning is involved.

one-shot way, which eliminates the need of introducing additional constraints or
retraining, thus simplifying the pruning complexity a lot. We utilize this approach
in this work to achieve our goal of model compression.

3. Proposed Approach

Our P-SiamFC++ is built up by pruning SiamFC++ [32] using the rank-based
filter pruning method proposed in HRank [18], with the difference that we use
block-wise pruning ratios to search for optimal ratios in P-SiamFC++(v2). The
details are described as follows.

3.1. P-SiamFC++ Overview
As illustrated in Fig. 2, our P-SiamFC++ consists of a template branch, a

search branch and three parts: backbone, neck and head. The two branches share
the same backbone (i.e., Alexnet [49]) for feature extraction, which is denoted by
the mapping ϕ(·). The template branch generates features using the tracking target
patch Z (as input). The search branch generates features using the search region X.
The features of the two branches are coupled with cross-correlation before being
used for subsequent classification and regression tasks. The coupled features are
defined as follows:

fl(Z,X) = ψl(ϕ(Z)) ⋆ ψl(ϕ(X)), l ∈ {cls, reg}, (1)
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where ⋆ denotes the cross-correlation operation, and ψl(·), l ∈ {cls, reg} denotes
the task-specific layer (‘cls’ and ‘reg’ are short for classification and regression,
respectively). Note that the output of ψcls and ψreg are of the same size. The classi-
fication branch, with the output being Ocls

h×w×2, is used to predict the category for
each location, while the regression branch, with the output being Oreg

h×w×4, is to
compute the target bounding box at this location, where w and h are the width and
height of the outputs, respectively. Ocls

h×w×2(i, j, :) is a 2D vector representing the
foreground and background scores of the location (i, j), while Oreg

h×w×4(i, j, :) is a
4D vector representing the distances from the corresponding location to the four
sides of the bounding box. A center-ness branch, with the output being Ocen

h×w×1,
is in parallel with the classification branch to assess classification qualities, which
is finally used to reweight the classification scores. The pipeline of our PW-
SiamFC++ is the same as that of SiamFC++. The difference lies in the pruned
feature maps determined by filter pruning, which will be explained in detail in the
following subsection.

3.2. Rank-based Filter Pruning Criterion
Denote the i-th (i ∈ [1, K]) convolutional layer Ci of the SiamFC++ by a set

of 3-D filters WCi = {wi
1, w

i
2, ..., w

i
m} ∈ Rni×ni−1×ki×ki , where ni denotes the

number of filters in Ci, ki is the kernel size, and the j-th filter is wi
j ∈ Rni−1×ki×ki .

The output feature maps of the filters are denoted by OCi = {oi1, oi2, ..., oim} ∈
Rni×g×hi×wi , where oij ∈ Rg×hi×wi is generated by wi

j , g is the number of input
images, hi and wi denote the height and width of the feature maps, respectively.
The rank-based filter pruning in [18] is formulated as the following optimization
problem:

min
δi,j

K∑
i=1

ni∑
j=1

δi,jEI∼P (I)[Rank(o
i
j(I))], s.t

ni∑
j=1

δi,j = nip, (2)

where I denotes an input image which follows the P (I) distribution, ni
p represents

the number of filters to be pruned in Ci. δi,j ∈ {0, 1} indicates whether the filter
wi

j is pruned, δi,j = 1 if it is, otherwise δi,j = 0. Rank(·) computes the rank of a
feature map , which is a measure of information richness.The expectation of ranks
generated by a single filter is empirically proved to be robust to the input images
[18], on the ground of which Eq. (2) is approximated by

min
δi,j

K∑
i=1

ni∑
j=1

δi,j

g∑
t=1

Rank(oij(It)), s.t

ni∑
j=1

δi,j = nip, (3)
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where t indexes the input images. Eq. (3) be minimized by pruning ni
p filters with

the least average ranks of feature maps.

3.3. Losses for Finetuning
We now formulate the losses for finetuning P-SiamFC++ after the pruning.

Let (x0, y0) and (x1, y1) represent the left-top and right-bottom coordinates of
the ground truth bounding box, and (x, y) denote the corresponding location of
the point (i, j), then the regression target t̂(i,j) = {t̂k(i,j)}3k=0 at Oreg

h×w×4(i, j, :) is
defined by

t̂0(i,j) = l̂ = x− x0, t̂
1
(i,j) = t̂ = y − y0,

t̂2(i,j) = r̂ = x1 − x, t̂3(i,j) = b̂ = y1 − y.
(4)

The IOU loss for regression is defined as follows

Lreg =
1∑

i,j I(t̂(i,j))

∑
i,j

I(t̂(i,j))LIOU (O
reg
(i,j,:), t̂(i,j)), (5)

where LIOU indicates the IOU loss as in [50], I(·) is the indicator function defined
by:

I(t̂(i,j)) =
{
1 if t̂k(i,j) > 0, k = 0, 1, 2, 3

0 otherwise.
(6)

Denote the centerness score at (i, j), i.e., Ocen
h×w×1(i, j), by c(i, j) as follows,

c(i, j) = I(t̂(i,j)) ∗

√
min(l̂, r̂)

max(l̂, r̂)
× min(t̂, b̂)

max(t̂, b̂)
. (7)

Then the centerness loss is defined by

Lcen =
−1∑

i,j I(t̂(i,j))

∑
I(t̂(i,j))==1

c(i, j) ∗ log(Ocen
h×w×1(i, j))

+(1− c(i, j)) ∗ log(1−Ocen
h×w×1(i, j)).

(8)

The overall loss for finetuning P-SiamFC++ then is:

L = Lcls + λ1Lreg + λ2Lcen, (9)

whereLcls is the cross-entropy loss [51] for classification, λ1 and λ2 are predefined
constants to balance the losses.
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3.4. Rank-based Filter Pruning Schedule
The pipeline of rank-based filter pruning is as follows: First, calculate the

average rank of the feature map of any filter in each layer to obtain the rank set
{Ri}Ki=1 = {{ri1, ri2, ..., rini

}}Ki=1. Second, each Ri is sorted in decreasing order,
ending up with R̄i = {ri

si1
, ri

si2
, ..., risini

}, where sij is the index of th j-th top value

in Ri. Third, we empirically determine the number of pruned filters of each layer
ni
p in order to prune the SiamFC++ model, and then conduct filter pruning to

obtain P-SiamFC++. After pruning, Ri turns to R̂i = {ri
si1
, ri

si2
, ..., ri

sin̂i

} in which

n̂i = ni − ni
p. Finally, the filters retained are initialized with the original weights

in the trained SiamFC++ model, and then the compressed model P-SiamFC++ is
finetuned.

4. Experiments

In this section, the proposed tracker is exhaustively evaluated on four public
challenging UAV benchmarks, i.e., UAV123@10fps [52], DTB70 [53], UAVDT
[54] and Vistrone2018 [55]. UAV123@10fps is designed to investigate the impact
of camera capture speed on tracking performance, which was constructed by down
sampling the UAV123 benchmark [52] to 10 FPS from 30FPS. DTB70 consists
of 70 UAV sequences primarily addresses the problem of severe UAV motion, but
includes as well various cluttered scenes and objects with different sizes. UAVDT
is mainly for vehicle tracking with various weather conditions, flying altitudes and
camera views. Vistrone2018 (VisDrone2018-test-dev) is from the single object
tracking challenge held in conjunction with the European conference on computer
vision (ECCV2018), which focuses on evaluating tracking algorithms on drones.

4.1. Experimental setup
The evaluation experiments are conducted using MATLAB R2019a on a PC

with an i9-10850K processor (3.GHz), 16GB RAM and a NVIDIA Titan X GPU.
Notice that there are two settings of pruning ratios for our P-SiamFC++, corre-
sponding to two versions of realizations which are dubbed P-SiamFC++(v1) and
P-SiamFC++(v2), respectively. P-SiamFC++(v1) uses layer-wise pruning ratios
and is just the implementation of our previous work [19]. P-SiamFC++(v2) is
implemented here and uses block-wise pruning ratios for enhancement. Specif-
ically, for P-SiamFC++(v1), the pruning ratios for the five convolutional layers
in backbone (AlexNet) are (0.792, 0.875, 0.878, 0.870, 1.0), and for the three
convolutional layers in head, for classification and regression, respectively, are
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(a) UAV123@10fps (b) DTB70 (c) UAVDT (d) VisDrone2018

Figure 3: Overall performance of hand-crafted based trackers on (a) UAV123@10fps [52] (b)
DTB70 [53](c) UAVDT [54] and (d) VisDrone2018 (VisDrone2018-test-dev) [55]. Precision and
success rate for one-pass evaluation (OPE) [65] are used for evaluation. The precision at 20 pixels
and area under curve (AUC) are used for ranking and marked in the precision plots and success
plots respectively.

(0.898, 0.539, 0.875) and (0.887, 0.566, 0.875). The neck is not pruned. For P-
SiamFC++(v2), the block-wise pruning ratios for the backbone, the neck, and the
head are 0.7, 0.5, and 0.3, respectively. Other parameters for training and inferenc-
ing follow that of SiamFC++ [32]. Note that the real-time performance is defined
relatively and is generalized only to platforms with computational resources equal
to or more than the ones we used.

4.2. Comparison with DCF-based trackers
Fourteen state-of-the-art trackers based on hand-crafted features for compari-

son are: RACF [10], AutoTrack [4], ARCF-HC [13], STRCF [56], MCCT-H [57],
KCC [58], ECO-HC [24], BACF [59], Staple-CA [60], CSRDCF [61], fDSST
[62], KCF [23], DSST [63] and SAMF [64]. The precision and success plots
on the four benchmarks are shown in Fig. 3. Some attribute-based evaluation is
shown in Fig. 4. In addition, the average performance in terms of precision (PRC)
and frames per second (FPS) on a single CPU is displayed in the Table 1.

Overall performance evaluation: The overall performance of P-SiamFC++
with the competing trackers on the four benchmarks is shown in Fig. 3. As
can be seen, P-SiamFC++(v1) and P-SiamFC++(v2) outperform all other trackers
on all four benchmarks. Specifically, on UAV123@10fps, DTB70 and UAVDT,
P-SiamFC++(v1) significantly outperforms the second tracker RACF in (PRC,
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Table 1: Average precision (PRC) and speed (FPS) comparision between P-SiamFC++ and hand-
crafted based trackers on UAV123@10fps, DTB70, UAVDT and VisDrone2018. All the reported
FPSs are evaluated on a single CPU. Red, blue and green respectively indicate the first, second and
third place. Note that P-SiamFC++ is the best real-time tracker (with a speed >30FPS) on CPU.

KCF fDSST Staple-CA BACF ECO-HC MCCT-H STRCF ARCF-HC AutoTrack RACF P-SiamFC++(v1) P-SiamFC++(v2)
PRC 53.3 60.4 64.2 65.3 68.8 66.8 67.1 71.9 72.3 75.7 78.8 78.8

FPS (CPU) 622.5 193.4 64.3 54.2 84.5 63.4 28.4 34.2 58.7 35.7 46.1 76.4

AUC) with gains of (3.7%, 6.3%), (7.8%, 9.9%) and (3.4%, 7.2%), respectively,
while P-SiamFC++(v2) improves the (PRC, AUC) of P-SiamFC++(v1) by (1.7%,
1.7%), (0.0%, 1.2%), and (1.9%, 2.1%) on these three benchmarks, respectively.
On VisDrone2018, P-SiamFC++(v2) is inferior to P-SiamFC++(v1) with gaps of
(3.5%, 3.0%) in (PRC, AUC), and P-SiamFC++(v1) is inferior to the first tracker
RACF in PRC with a gap of 2.5% but is the first place in AUC, although by a
narrow margin of 0.1% to the second place. In terms of speed, we evaluate the
average FPS on a single CPU of the competing trackers on the four benchmarks,
the average FPSs along with the average PRCs are shown in Table 1. As can be
seen, P-SiamFC++(v1) and P-SiamFC++(v2) achieve the same average PRC, i.e.
78.8%, and outperform all the competing trackers, and they are also the best real-
time tracker (with a speed of>30FPS) on CPU, with a speed of 46.6 FPS and 76.4
FPS, respectively. Note that although P-SiamFC++(v1) significantly surpasses P-
SiamFC++(v2) on VisDrone2018, P-SiamFC++(v2) has a higher pruning ratio
overall achieving, therefore, a significantly faster speed, with the same average
PRC as that of P-SiamFC++(v1). Given these, P-SiamFC++(v2) strikes a better
balance between efficiency and precision than P-SiamFC++(v1).

Attribute-based evaluation: Our P-SiamFC++(v1) and P-SiamFC++(v2) out-
perform other competing DCF-based trackers in most attributes defined respec-
tively in the four benchmarks. Examples of success plots are shown in Fig. 4. As
can be seen, in the situations of fast motion and scale variation on UAV123@10fps,
background clutter and occlusion on DTB70, illumination variations and small ob-
ject on UAVDT, low resolution and out-of-view on VisDrone2018, P-SiamFC++(v1)
and P-SiamFC++(v2) demonstrate significant improvements over other trackers
because the effectiveness of feature representation with deep learning, justify-
ing the effectiveness of developing lightweight deeper trackers for UAV track-
ing. For example, P-SiamFC++(v1) and P-SiamFC++(v2) significantly surpass
the second place RACF on fast motion subset of UAV123@10fps by a gap of
9.6% and 10.9%, on background clutter subset of DTB70 by a gap of 6.7% and
13.4%, respectively. We can also observe that in most these attribute subsets P-
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(a) UAV123@10fps (b) DTB70 (c) UAVDT (d) VisDrone2018

Figure 4: Attribute-based comparison on fast motion, scale variation, background clutter, occlu-
sion, illumination variations, small object, low resolution, and out-of-view.

SiamFC++(v2) outperforms P-SiamFC++(v1) except on the subsets of the Vis-
Drone2018. This suggests that many filters that may be helpful for tracking on
the VisDrone2018 have been pruned because of their smaller rank information,
but pruning them increases the AUC on the rest benchmarks. Therefore, there is
room for improvement of the rank-based filter pruning criterion considering it is
kind of data dependent as a criterion. We will explore better pruning criterion in
our future work.

Qualitative evaluation: Some qualitative tracking results of our P-SiamFC++
and four top CPU-based trackers are shown in Fig. 5. From the four bench-
marks, eight video sequences (i.e., boat3, person10, BMX3, SUP2, S1201, S0304,
uav0000164 00000 s, and uav0000353 00001 s, two from each benchmark) are
selected for demonstration. It can be seen that the four CPU-based trackers fail to
maintain robustness in these challenging examples that objects are experiencing
large deformation or pose change or partial occlusion, but our P-SiamFC++ per-
forms much better and is visually more satisfying by virtue of the deep representa-
tion learning. Specifically, all trackers except the proposed P-SiamFC++(v1) and
P-SiamFC++(v2) fail in tracking the person in the sequence persion10 and the car
in the sequence uav0000164 00000 s; only ARCF-HC, P-SiamFC++(v1) and P-
SiamFC++(v2) succeed in tracking the target in BMX3 but our P-SiamFC++(v1)
and P-SiamFC++(v2) are more accurate; only ECO-HC, P-SiamFC++(v1) and P-
SiamFC++(v2) succeed in tracking the car in S1201 but also our P-SiamFC++(v1)
and P-SiamFC++(v2) are more accurate; the target in boat3, SUP2, S0304, and
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Table 2: Precision (PRC) and speed (FPS) comparison between P-SiamFC++ and deep-based
trackers on UAVDT [54]. All the reported FPSs are evaluated on a single GPU. Red, blue and
green indicate the first, second and third place.

SiamR-CNN D3S PrDimp18 KYS SiamGAT LightTrank TransT HiFT SOAT AutoMatch P-SiamFC++ (v1) P-SiamFC++ (v2)
PRC 66.5 72.2 73.2 79.8 76.4 80.4 82.6 65.2 82.1 82.1 80.7 82.6

FPS (GPU) 7.2 44.2 48.1 30.0 74.2 84.1 41.8 134.1 29.2 50.0 258.8 298.5

uav0000353 00001 s are successfully tracked by all trackers but, likewise, our
P-SiamFC++(v1) and P-SiamFC++(v2) are more accurate. This suggests that de-
veloping more efficient deep trackers for UAV tracking might be more effective in
terms of improving tracking precision.

4.3. Comparison with deep-based trackers
The proposed P-SiamFC++ is also compared with thirteen state-of-the-art deep

trackers on the UAVDT dataset, including AutoMatch [66], SOAT [67], HiFT [5],
TransT [68], LightTrack [69], SiamGAT [70], KYS [37], D3S [71], SiamR-CNN
[72], PrDiMP18 [73], Atom [35], Dimp50 [36] and SiamDW [74]. The FPS along
with the precision (PRC) of the trackers on UAVDT are shown in Table 2. As can
be seen, both P-SiamFC++(v2) and TransT achieve the best precision of 82.6%
PRC, but P-SiamFC++(v2) is above 6 times faster than TransT, i.e., 298.5 FPS
vs 41.8 FPS, and 9 times and near 5 times, respectively, faster than SOAT and
AutoMatch that tie for second place in precision, i.e., 82.1% PRC. Although P-
SiamFC++(v1) is inferior in precision to TransT, SOAT and AutoMatch, the gaps
are less than 2% and its speed is 5, 7, and 4 times faster than TransT, SOAT and
AutoMatch, respectively. This justifies that our P-SiamFC++(v1) and especially
P-SiamFC++(v2) can achieve a better balance between precision and efficiency
(i.e., speed).

4.4. Ablation study
Impact of layer-wise pruning ratios: To see how the pruning ratios affect the

precision of P-SiamFC++, we trained P-SiamFC++ with different pruning ratios,
including layer-wise ratios and global ratios. In the layer-wise manner, a certain
layer of SiamFC++ is pruned with a pruning ration ranging from 0.1 to 0.8 while
other layers stay untouched. The same layer of the two branches in the head and
neck is pruned with the same ratio for simplicity. In the global manner, each con-
volutional layer in backbone, neck and head is pruned with the a global ratio that
ranges also from 0.1 to 0.8. The precisions (PRCs) of P-SiamFC++ with different
pruning ratios are shown in Table 3. As can be seen, in the layer-wise manner, the
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Figure 5: Qualitative evaluation on 8 video sequences from, respectively, UAV123@10fps, DTB70
and UAVDT (i.e. boat3, person10, BMX3, SUP2, S1201, S0304, uav0000164 00000 s, and
uav0000353 00001 s.). The results of RACF, AutoTrack, ARCF-HC, ECO-HC, and our P-
SiamFC++ are shown with different colors.
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Table 3: Illustration of how the precision (PRC) of P-SiamFC++ on DTB70 varies with the prun-
ing ratio that ranges from 0.1 to 0.8 in step of 0.1. ’L1 (Backbone)’ represents pruning the first
convolutional layer in the backbone only, and ’Backbone + Neck + Head’ means all the convolu-
tional layers in backbone, neck and head are pruned with the same pruning ratio.

Model 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
L1 (Backbone) 79.2 79.0 79.8 79.1 78.6 74.7 76.5 76.3
L2 (Backbone) 77.3 79.0 78.4 81.1 80.4 78.5 78.7 74.0
L3 (Backbone) 77.6 78.6 78.6 76.0 79.7 78.2 78.1 79.1
L4 (Backbone) 79.0 81.7* 80.0 78.6 81.0 79.3 78.6 78.5
L5 (Backbone) 78.5 80.1 79.9 78.3 78.8 77.5 78.2 77.9

L1 (Neck) 77.2 76.7 77.4 77.9 77.0 79.7 81.6 79.8
L2 (Neck) 77.0 80.4 79.2 81.5 78.2 78.0 79.1 78.8
L1 (Head) 77.5 77.9 77.5 77.9 76.9 78.9 77.7 77.3
L2 (Head) 79.4 78.9 78.7 79.8 78.1 77.1 80.6 76.7
L3 (Head) 79.3 81.7* 77.3 81.7 79.0 74.8 76.6 76.3

Backbone + Neck + Head 79.6 80.0 81.0 79.5 77.6 78.6 77.9 76.4

best precision is most often achieved when the pruning ratio is 0.2 while the best
in the global manner happens when the pruning ratio is 0.3, which suggests that
filter pruning is not only good for simplifying the model and raising efficiency
but also benefit the precision, because it can improve the generalization ability of
the model. However, using a global pruning ratio would neglect the differences
between different layers, hardly leading to an optimal pruning for each layer si-
multaneously, whereas, optimal layer-wise pruning ratios is too cumbersome and
time-consuming to determine. This motivates the block-wise pruning ratios we
explore here.

Impact of block-wise pruning ratios: Exhaustively searching an optimal set-
ting of layer-wise pruning ratios is rather time-consuming. Even though the same
layer of the two branches in the head and neck was pruned with the same ratio,
there are 10 layer-wise pruning ratios to be settled. And there are 810 possible
combinations of layer-wise pruning ratios even if each layer tries 8 pruning ratios
only. To make things easier, we use block-wise pruning ratios instead, defining
three blocks: backbone, neck, and head, ending up to 3 block-wise pruning ratios
denoted by ρB, ρN , and ρH , respectively. The combinations are built up with the
ranges from 0.5 to 0.8, from 0.4 to 0.7, and from 0.3 to 0.6 for the backbone,
neck, and head, respectively, all with step size 0.1, resulting in 43 combinations
in total. The average precision (PRC) on the four benchmarks and model size of
P-SiamFC++ with different block-wise pruning ratios are shown in Table 4. As
can be seen, when (ρB, ρN , ρH)=(0.7, 0.5, 0.3), it achieves the highest average
precision of 78.8.% with a model size of about 3.05M, which makes the setting
of pruning ratios for our tracker P-SiamFC++(v2); when (ρB, ρN , ρH)=(0.5, 0.4,
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Table 4: Illustration of how the average precision of P-SiamFC++ on the four benchmarks and
model size (parameters) vary with the three block-wise pruning ratios (ρB , ρN , ρH ) that specify
the pruning ratios for the backbone, the neck, and the head, respectively. The combinations of the
three block-wise pruning ratios are built up with the ranges for backbone, neck, and head from 0.5
to 0.8, 0.4 to 0.7, and 0.3 to 0.6, respectively, with step size 0.1.

(ρB, ρN , ρH) PRC Parameters (M) (ρB, ρN , ρH) PRC Parameters (M) (ρB, ρN , ρH) PRC Parameters (M) (ρB, ρN , ρH) PRC Parameters (M)
(0.5, 0.4, 0.3) 76.4 1.76 (0.6, 0.4, 0.3) 76.3 2.26 (0.7, 0.4, 0.3) 76.4 2.84 (0.8, 0.4, 0.3) 76.3 3.49
(0.5, 0.4, 0.4) 76.6 1.98 (0.6, 0.4, 0.4) 75.7 2.47 (0.7, 0.4, 0.4) 75.6 3.06 (0.8, 0.4, 0.4) 76.6 3.70
(0.5, 0.4, 0.5) 74.6 2.24 (0.6, 0.4, 0.5) 77.0 2.74 (0.7, 0.4, 0.5) 75.6 3.32 (0.8, 0.4, 0.5) 76.3 3.97
(0.5, 0.4, 0.6) 75.4 2.54 (0.6, 0.4, 0.6) 76.6 3.04 (0.7, 0.4, 0.6) 75.9 3.62 (0.8, 0.4, 0.6) 76.3 4.27
(0.5, 0.5, 0.3) 75.5 1.92 (0.6, 0.5, 0.3) 77.0 2.44 (0.7, 0.5, 0.3) 78.8 3.05 (0.8, 0.5, 0.3) 76.7 3.72
(0.5, 0.5, 0.4) 76.3 2.15 (0.6, 0.5, 0.4) 76.3 2.67 (0.7, 0.5, 0.4) 76.8 3.27 (0.8, 0.5, 0.4) 75.5 3.94
(0.5, 0.5, 0.5) 74.8 2.42 (0.6, 0.5, 0.5) 76.4 2.94 (0.7, 0.5, 0.5) 76.6 3.55 (0.8, 0.5, 0.5) 76.0 4.22
(0.5, 0.5, 0.6) 76.0 2.73 (0.6, 0.5, 0.6) 76.2 3.25 (0.7, 0.5, 0.6) 77.3 3.86 (0.8, 0.5, 0.6) 78.2 4.53
(0.5, 0.6, 0.3) 74.9 2.07 (0.6, 0.6, 0.3) 77.0 2.61 (0.7, 0.6, 0.3) 75.8 3.24 (0.8, 0.6, 0.3) 75.8 3.93
(0.5, 0.6, 0.4) 75.5 2.31 (0.6, 0.6, 0.4) 77.3 2.85 (0.7, 0.6, 0.4) 76.0 3.48 (0.8, 0.6, 0.4) 77.8 4.17
(0.5, 0.6, 0.5) 74.8 2.60 (0.6, 0.6, 0.5) 77.1 3.14 (0.7, 0.6, 0.5) 77.3 3.77 (0.8, 0.6, 0.5) 76.2 4.46
(0.5, 0.6, 0.6) 76.4 2.92 (0.6, 0.6, 0.6) 76.4 3.46 (0.7, 0.6, 0.6) 77.1 4.09 (0.8, 0.6, 0.6) 77.2 4.78
(0.5, 0.7, 0.3) 76.9 2.23 (0.6, 0.7, 0.3) 76.2 2.79 (0.7, 0.7, 0.3) 77.5 3.43 (0.8, 0.7, 0.3) 76.6 4.16
(0.5, 0.7, 0.4) 75.9 2.48 (0.6, 0.7, 0.4) 76.3 3.04 (0.7, 0.7, 0.4) 76.6 3.69 (0.8, 0.7, 0.4) 76.6 4.41
(0.5, 0.7, 0.5) 76.3 2.78 (0.6, 0.7, 0.5) 78.2 3.34 (0.7, 0.7, 0.5) 77.8 3.99 (0.8, 0.7, 0.5) 77.2 4.71
(0.5, 0.7, 0.6) 76.0 3.11 (0.6, 0.7, 0.6) 77.1 3.67 (0.7, 0.7, 0.6) 77.0 4.33 (0.8, 0.7, 0.6) 77.5 5.04

0.3), P-SiamFC++ has the smallest model size of about 1.76M with an average
precision of 76.4%, a decrease of 2.4% and 1.29M in precision and model size, re-
spectively, compared with P-SiamFC++(v2). We can observe that it is not always
true that the large the model size the higher the average precision. For example,
the largest model has 5.04M parameters happening when (ρB, ρN , ρH)=(0.8, 0.7,
0.6), but its average precision, i.e., 77.5%, is lower than that of P-SiamFC++(v2),
with a gap of 1.3%. And the second place in precision is when (ρB, ρN , ρH)=(0.6,
0.7, 0.5) or (ρB, ρN , ρH)=(0.8, 0.5, 0.6), both of which correspond to a larger
model size, i.e., 3.34M and 4.53M, than P-SiamFC++(v2). These results imply
that the relation between precision and model size is much more complicated than
a linear correlation, but they also suggest as before that filter pruning may improve
both efficiency and accuracy if the pruning ratios are appropriately designed.

Effect of rank-based filter pruning: To see how the model size, precision
and tracking speed will change when the rank-based filter pruning is applied to
the baseline tracker SiamFC++, we compare the proposed P-SiamFC++(v1) and
P-SiamFC++(v2) with the baseline SiamFC++ on all the four UAV benchmarks.
Their comparison in terms of model size, precision (PRC) and speed (on both CPU
and GPU) are shown in Table 5. As can be seen, the model size of P-SiamFC++
is reduced to 77.6% (≈7.49/9.66) and 31.6% (≈3.05/9.66) of the original for P-
SiamFC++(v1) and P-SiamFC++(v2), respectively. Both the CPU and GPU speed
are improved. Since the parallel computing units on our GPU far exceeds the size
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Table 5: Comparison of model size (parameters) precision and tracking speed of our P-SiamFC++
and the baseline SiamFC++ on four UAV benchmarks. PRC is short for precision. Note that only
the precisions on CPU are shown here since the difference of precision on CPU and GPU is very
small.

Methods Parameters
UAV123@10fps DTB70 UAVDT VisDrone2018 Avg.

PRC
FPS

PRC
FPS

PRC
FPS

PRC
FPS

PRC
FPS

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU
SiamFC++ 9.66M 72.8 29.0 212.1 80.5 29.8 219.3 76.2 30.0 238.9 72.5 28.9 205.8 75.5 29.4 219.1

P-SiamFC++ (v1) 7.49M 73.1 45.1 236.4 80.3 45.6 238.2 80.7 48.8 258.8 80.9 45.0 230.5 78.8 46.1 241.0
P-SiamFC++ (v2) 3.05M 74.8 67.1 300.8 80.3 64.7 298.0 82.6 66.3 298.5 77.4 71.4 294.9 78.8 76.4 298.1

of both models, the average GPU speed has increased by only 11% and 36% on
P-SiamFC++(v1) and P-SiamFC++(v2), respectively. But the average CPU speed
has been raised from 29.4 FPS to 46.1 FPS and to 76.4FPS, with an increase
of 56.8% and 160%, respectively. Remarkably, although P-SiamFC++(v1) is
slightly inferior to the baseline SiamFC++ on DTB70, the precision improvement
on UAVDT and VisDrone2018 is very significant, specifically, with gains of 4.5%
and 8.4%, respectively. As to P-SiamFC++(v2), it has improved or maintained the
precision of P-SiamFC++(v1) on all benchmarks except VisDrone2018, and has
significantly improved its speed and model size. Specifically, P-SiamFC++(v2)
improves the precision of P-SiamFC++(v1) by 1.7%, 1.9% on UAV123@10fps
and UAVDT, respectively, decreases its model size to less than a half, i.e., from
7.49M to 3.05M, and raises the CPU and GPU speed by 30.3FPS and 57.1FPS,
respectively, despite the same precision on DTB70 and a drop of 3.5% on Vis-
Drone2018. Taken together, P-SiamFC++(v2) strikes a better balance between
precision and efficiency than P-SiamFC++(v1) does, and they both improve the
efficiency and precision of SiamFC++ on the whole. These results justify that the
proposed method is effective for real-time UAV tracking.

5. Conclusions

In this work, we are the first to use rank-based filter pruning to narrow the
gap between DCF- and DL- based trackers in UAV tracking. The proposed P-
SiamFC++(v1) and P-SiamFC++(v2) achieve a remarkable balance between ef-
ficiency and precision, and demonstrates state-of-the-art performance on four pub-
lic UAV benchmarks, namely, UAV123@10fps, DTB70, UAVDT and Vistrone2018.
The proposed method can not only improve efficiency but, surprisingly, also im-
prove tracking precision. In particular, the proposed P-SiamFC++(v2) reduces the
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model size of the baseline SiamFC++ to less than one-third of the original, i.e.,
from 9.66M to 3.05M, and raises its average precision from 75.5% to 78.8%, hav-
ing an increase of 3.3%. We believe our work will draw more attention to model
compression in UAV tracking.

In this work, we only employ a ranked-based filter pruning to compress the
baseline SiamFC++. Future works includes investigating other filter pruning meth-
ods, better pruning criterion, and other baseline trackers. Another research direc-
tion is to explore effective filter pruning with one global pruning ratio in view
of that the determination of layer-wise or block-wise pruning ratios in this is so
laborious and time-consuming.
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