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Abstract. Due to the limitations of computing resources, battery capacity, and max-
imum load of unmanned aerial vehicle (UAV), efficiency is a critical issue in UAV
tracking. Deep learning (DL)-based trackers are known for their high precision
but hardly achieve real-time tracking on a single CPU. The traditional framework
of discriminative correlation filters (DCF) is famous for its high efficiency but its
precision is barely satisfactory. Despite the inferior precision, DCF-based trackers
rather than DL-based ones are widely adopted in UAV tracking to trade precision
for efficiency. This paper aims to trade off efficiency and precision for UAV track-
ing using model compression techniques (i.e., filter pruning), which has not been
well explored before. To combat the possible precision drop caused by pruning, we
propose a dynamic channel weighting strategy to improve the rank-based pruning
method which uses the average rank of each filter response as the pruning crite-
rion. The dynamic channel weighting seeks to adjust the contribution to the loss
of each channel through optimization. As a result, we achieved better precisions
when compressing the original model SiamFC++ with a global pruning ratio in-
stead of tedious layer-wise ones. Extensive experiments on four UAV benchmarks,
i.e., UAV123@10fps, DTB70, UAVDT, and Vistrone2018, show that the proposed
tracker demonstrates a remarkable balance between precision and efficiency.
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1. Introduction

UAV tracking is of great importance in various military and non-military applications,
such as counter-terrorism, border security, product deliveries, agriculture, etc. [1,2].
However, compared to visual tracking in general scenes, UAV tacking faces more
formidable challenges. As efficiency is currently a fundamental issue in UAV tracking,
discriminative correlation filters (DCF)-based trackers instead of deep learning (DL)-
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based ones are frequently adopted to trade precision for efficiency. Unfortunately, al-
though the tracking precisions of DCF-based trackers has been improved, they still can-
not compare with most state-of-the-art DL-based trackers, whereas, state-of-the-art DL-
based trackers can hardly run at real-time speed on a single CPU. Very recently, an ef-
ficient deep tracker for UAV tracking was proposed in [2], which uses a lightweight
backbone to achieve a remarkable tracking precision. However, this tracker is not yet
real-time on a single CPU. Importantly, it implies that an lightweight DL-based tracker
could be a good substitute for DCF-based trackers to balance efficiency and precision,
which inspires us to exploit model compression to trade precision for efficiency in seek-
ing lightweight DL-based trackers. Model compression technique is typically used to
deploy deep networks in resource-constrained devices without greatly compromising
model accuracy [3]. Prevalent methods include pruning, quantization, low-rank approx-
imation, and knowledge distillation [4]. However, the selection of DL tracker and com-
pression method is essential to achieve real-time yet high precision tracking performance.
SiamFC++ [5] ’s precision and speed make it a good choice as a DL-based tracker to
be compressed. The rank-based filter pruning method [6] is very straightforward and has
high training efficiency, which is chosen as our model compression method. But the de-
termination of its layer-wise pruning ratios is arduous and time-consuming. Fortunately
this can be avoided by using a global pruning ratio. In order to use a global pruning
ratio this paper proposes a dynamic channel weighting strategy to diminish the loss of
precision probably caused by it. We call the proposed method PW-SiamFC++ since our
tracker is based on filter pruning and dynamic weighting.

Our contributions can be summarized as follows: (1) We provide a novel approach to
trade-off efficiency and precision for UAV tracking through filter pruning. Filter pruning
is key to enhance the efficiency in our tracker and has not been well explored before.
(2) To combat the accuracy drop caused by filter pruning with a global pruning ratio,
we propose a dynamic channel weighting to adjust the contribution of each channel in
every convolutional layer to the total loss, with which the proposed tracker, i.e., PW-
SiamFC++, is able to prune the SiamFC++ with a rank-based criterion to about 60% of
its original model size, meanwhile remarkably achieving an overall better precision. (3)
We conduct experiments on four UAV tracking benchmarks, namely UAV123@10fps,
DTB70, UAVDT, and VisDrone2018 which demonstrate that the PW-SiamFC++ tracker
achieves SOTA performance in UAV tracking.

2. Related Works

2.1. Visual Tracking Methods

MOSSE [7] is the first DCF tracker that utilizes the minimum output sum of squared er-
ror filter for tracking and brings other variants [8]. DCF-based trackers can be calculated
in the Fourier domain, which leading to competitive performance with high efficiency,
which, therefore, stood out in the UAV tracking community. However, due to the lim-
ited representation ability of handcrafted features, it is difficult for DCF-based trackers
to maintain robustness under challenging scenarios. As to DL-based trackers, SiamFC
[9] regards visual tracking as a general similarity learning problem, and uses Siamese
network to measure the similarity between the target and the search image. Since then, a
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number of DL-based trackers based on the Siamese architecture have been proposed. Re-
cently, deeper architectures have been developed to further improve tracking precision,
including SiamRPN++ [10], SiamBAN [11] and etc. However, their tracking efficiency
is largely sacrificed. In contrast, SiamFC++ [5] has a lightweight backbone and an effec-
tive quality assessment branch for classification, making it a simple but effective frame-
work. Unfortunately, its CPU speed seems farfetched to meet strict real-time require-
ments. This paper intends to improve the efficiency of SiamFC++ while maintaining its
precision as much as possible with filter pruning.

2.2. Filter Pruning

Filter pruning is generally divided into weight pruning and filter pruning [4]. Weight
pruning usually removes neurons or weights, while filter pruning removes the entire fil-
ters or channels. A pruning pipeline is usually comprised of three steps: pretraining, prun-
ing and finetuning, and it normally involves four classic topics, i.e., pruning structure,
pruning ratio, pruning criterion, and pruning schedule [4]. The pruning ratio indicates
how many weights to remove, and there are usually two ways to settle it. The first is a
predefined full layer ratio or multiple layer-wise ratios. The second is to indirectly adjust
the pruning ratio, such as using a regularization-based pruning method. The pruning cri-
terion is used to determine which weights to prune. Last but not least, pruning schedule
is to specify how the network changes from start state to the target digital, one-shot or
progressively. The former is more efficient without involving complex training strategies.
Recently, an effective filter pruning method was proposed in [6]. However, the determi-
nation of layer-wise pruning ratios in this method is laborious and time-consuming. To
overcome this problem, we propose to use a global pruning ratio. Furthermore, to com-
bat the precision drop, we propose a dynamic channel weighting strategy to dynamically
adjust the weights. Hopefully, with adjusted weights, the contribution to the loss of each
channel mimics or surpasses the optimal state it could reach when the model is pruned
in a layer-wise manner.

3. Proposed Method

3.1. PW-SiamFC++ Overview

The proposed PW-SiamFC++ consists of a backbone, a neck, and a head network. The
overview of PW-SiamFC++ is shown in Fig. 1. The input consists of two branches,
namely the template branch and the search branch, taking the target patch Z and the
search patch X as input. The two branches share the same backbone network, denoted
by φ(·). The output features of them interact with the cross-correlation operation � as
follows,

fl(X ,Z) = ψl(φ(X))�ψl(φ(Z)),ψl ∈ {ψcls,ψreg}, (1)

where ψcls(·) and ψreg(·) denote the task-specific layer for regression and classification,
respectively. The classification branch is used to predict the category for each location,
while the regression branch is to compute the target bounding box at this location, where
w and h are the width and height of the outputs, respectively. A center-ness branch is
used to assess classification qualities, which is finally used to reweight the classification
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Figure 1. The proposed PW-SiamFC++ method. It inherits the network structure of SiamFC++. Note that ψcls
and ψreg denote the task-specific convolutional layers for classification and regression, respectively.

scores. PW-SiamFC++ has the same pipeline as SiamFC++, with the differences being
in the pruned and the weighted feature maps, which will be explained in detail below.

3.2. Filter Pruning and Dynamic Channel Weighting

We utilize the rank-based filter pruning method with the average rank of each filter re-
sponse as the pruning criterion to prune the filters considered less important. We use a
group of 3-D filters WCi = {wi

1,w
i
2, ...,w

i
m} ∈R

ni×ni−1×ki×ki to denote the i-th (1 � i � K)
convolutional layer Ci of SiamFC++, where ki denotes the kernel size, ni indicates the
number of filters in Ci, and the j-th filter in Ci is parameterized by wi

j ∈ R
ni−1×ki×ki . The

output feature maps of Ci are denoted by OCi = {oi
1,o

i
2, ...,o

i
m} ∈ R

ni×g×hi×wi , where
oi

j ∈ R
g×hi×wi is associated with wi

j, wi and hi, respectively, denote the width and height
of the feature maps, g is the number of input images. The rank-based filter pruning solves:

min
δi, j

K

∑
i=1

ni

∑
j=1

δi, jEI∼P(I)[R(oi
j(I))], s.t

ni

∑
j=1

δi, j = ni
p, (2)

where I ∼ P(I) represents an input image, ni
p represents the number of filters pruned in

Ci. δi, j ∈ {0,1} indicates whether or not pruning wi
j, it is if δi, j = 1, otherwise δi, j =

0. R(·) is a measure of information richness, computing a feature map’ s rank. It is
empirically proved in [6] that expectation ranks generated by a single filter is robust to
the inputs [6], for which Eq. (2) is approximated by

min
δi, j

K

∑
i=1

ni

∑
j=1

δi, j

g

∑
t=1

R(oi
j(It)), s.t

ni

∑
j=1

δi, j = ni
p, (3)

Figure 2. An illustration of filter pruning and dynamic channel weighting proposed in our tracker. Filter prun-
ing intends to prune the filters according to the rank of the feature map. Dynamic channel weighting learns new
weights of the remaining channels to counteract the adverse effects of pruning.
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where t is the input images for indexed. Eq. (3) using the feature maps of least average
ranks is easily to minimize pruning ni

p filters The original rank-based filter pruning ap-
proach uses layer-wise pruning ratios to achieve more freedom in pruned structures and
thus better performance. But the determination of layer-wise pruning ratios is arduous
and time-consuming. To avoid this we use a global pruning ratio instead here. And we
proposes a dynamic channel weighting strategy to diminish the loss of precision proba-
bly due to the global pruning ratio. After the filter pruning, the remaining channels will
be dynamically reweighted according to filter responses. Considering that the relative
importance of each channel has been changed, hopefully, with the proposed dynamic
channel weighting, the adverse impacts of these changes will be canceled and even be
led to the beneficial side. We illustrate filter pruning and dynamic channel weighting of
a convolutional layer in Fig. 2. The dynamic channel weighting process is as follows.
First, the remaining n̂i (i.e., ni −ni

p) output feature maps of OCi in the i-th convolutional
layer, i.e., ÔCi , are mapped to a vector vi ∈ R

n̂i by a global average pooling. Then vi
is followed by a fully connected layer and the tanh(·) activation function successively
to produce a weighting vector wi. Finally, the weighting vector wi is used to reweight
the original output feature maps ÔCi by dot product to get ÕCi , the reweighted one. The
pruned SiamFC++ with the dynamic channel weighting layers incorporated makes the
network architecture of our PW-SiamFC++. The losses for finetuning the PW-SiamFC++
is just the same as that for training SiamFC++ [5].

3.3. Pruning and Weighting Schedule

The following is the process of pruning and weighting. Firstly, calculate the average
ranks associated with every filter to get the rank sets {Ri}K

i=1 = {{ri
1,r

i
2, ...,r

i
ni
}}K

i=1,
where Ri is the rank set of the i-th convolutional layer. Second, each rank set Ri to de-
creasing order for sorted, and end up with R̄i = {ri

si
1
,ri

si
2
, ...,ri

si
ni
}, where si

j is the in-

dex of the j-th top value in Ri. Third, conduct filter pruning according to a predefined
global pruning ratio ρ , with which Ri turns to R̂i = {ri

si
1
,ri

si
2
, ...,ri

si
n̂i

}, and incorporate

the dynamic channel weighting layers to obtain PW-SiamFC++. Finally, initialize the
retained filters with the original weights in SiamFC++ and all fully connected layers
for dynamic channel weighting with Kaiming initialization [12], and then finetune the
PW-SiamFC++.

4. Experiments

Our experiments are conducted on four challenging UAV benchmarks, i.e., UAV123@10fps
[13], DTB70 [14], UAVDT [15] and Vistrone2018 [16], with a PC equipped with i9-
10850K processor (3.6GHz), an NVIDIA TitanX GPU, and 16GB RAM. And the global
pruning ratio of our PW-SiamFC++ is set to 0.4. Others are the same as SiamFC++ [5].

4.1. Comparison with DCF-based Trackers

Ten DCF-based trackers are used for comparison, including KCF [17], fDSST [18],
BACF [19], Staple-CA [20], ECO-HC [21], STRCF [22], MCCT-H [23], ARCF-HC
[24], AutoTrack [1], and RACF [8].
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Figure 3. Overall performance of ten hand-crafted based trackers and our PW-SiamFC++ on the four bench-
marks. The area under curve (AUC) are used for marked in the success plots respectively and ranking .

Table 1. Average FPS(speed) and precision comparision between hand-crafted based trackers and PW-
SiamFC++ on DTB70, VisDrone2018, UAVDT and UAV123@10fps . On a single GPU we evaluated all the
reported FPS. Note that PW-SiamFC++ is the best real-time tracker (with speed >30FPS) on CPU.green , blue
and Red respectively:the third place, second and first.

KCF
[17]

fDSST
[18]

BACF
[19]

Staple-CA
[20]

ECO-HC
[21]

STRCF
[22]

MCCT-H
[23]

ARCF-HC
[24]

AutoTrack
[1]

RACF
[8]

PW-SiamFC++

Ours

Precision 53.3 60.4 65.3 64.2 68.8 67.1 66.8 71.9 72.3 75.7 78.1

FPS (CPU) 655.6 203.6 57.0 67.7 88.9 29.9 66.7 36.0 61.8 37.5 64.8

Quantitative assessment: Fig. 3 shows the success plots of the trackers on the four
benchmarks. As can be seen, PW-SiamFC++ surpassed all other trackers to a large mar-
gin on three benchmarks, i.e., UAVDT , DTB70 and UAV123@10fps. Specifically, PW-
SiamFC++ dramatically outperforms RACF, the second best tracker, in terms of area un-
der curve (AUC), with gains of 5.8%, 11.7% and 6.8%, respectively. We use average FPS
on a single CPU over the four benchmarks as the metric of speed. Table 1 demonstrates
the FPS and average precision of the competing trackers. We can see that PW-SiamFC++
in precision outperforms all the competing trackers and it is also real-time on a single
CPU (speed >30FPS), specifically 64.8 FPS.

Qualitative assessment: In Fig. 4, we qualitatively compare our method with four
top CPU-based trackers, i.e., RACF [8], AutoTrack [1], ARCF-HC, and ECO-HC [24],
on 2 sequences from UAV123@10fps [13] and DTB70 [14], (i.e. person10 and BMX4),
respectively. Different colors represent different methods. It can be seen in these chal-
lenging situations that all trackers except of ours finally fail to track the objects when
objects are experiencing large deformations (i.e., BMX4) and severe occlusion (i.e., per-
sion10). However, our PW-SiamFC++ is more satisfying and performs better in these
examples, which can be attributed to the powerful deep representation learning inherent
in our model.
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Figure 4. Two sequences for qualitative evaluation from DTB70 [14] and UAV123@10fps [13], (i.e. person10
and BMX4), respectively.

Table 2. FPS(speed) and precision comparison between deep-based trackers and PW-SiamFC++ on UAVDT
[15]. On a single GPU we evaluated all the reported FPS. Note that ρ indicates the global pruning ratio.

KYS
[25]

SiamR-CNN
[26]

PrDimp18
[27]

D3S
[28]

SiamGAT
[29]

HiFT
[2]

LightTrank
[30]

SOAT
[31]

TransT
[32]

AutoMatch
[33]

PW-SiamFC++(Ours)

ρ = 0.3 ρ = 0.4

Precision 79.8 66.5 73.2 72.2 76.4 65.2 80.4 82.1 82.6 82.1 81.3 79.2
FPS (GPU) 30.2 7.2 48.5 44.6 74.8 135.3 84.8 29.4 42.1 50.4 259.0 266.9

Table 3. How the precision of PW SiamFC++ varies with the global pruning ratio, which ranges from 0.8 to
0.1 in step of 0.1. The improved precisions by the dynamic channel weighting component are marked in bold.

UAV123@10fps DTB70 UAVDT VisDrone2018
ρ

w/o w/ w/o w/ w/o w/ w/o w/

0.1 70.8 70.9 79.6 80.5 81.4 79.6 79.6 77.6
0.2 71.6 72.2 80.0 80.1 76.9 81.6 80.2 74.5
0.3 71.3 72.3 81.0 80.0 83.9 81.3 75.6 76.5

0.4 71.9 71.5 79.5 81.1 78.8 79.2 79.3 79.9

0.5 71.1 70.2 77.6 79.2 77.5 78.9 72.7 77.0

0.6 68.7 68.8 78.6 79.1 76.6 77.8 75.2 75.1
0.7 69.1 66.9 77.9 78.7 77.8 79.4 76.7 80.0

0.8 65.2 66.4 76.4 74.8 74.6 75.9 71.8 72.2

4.2. Comparison with DL-based Trackers

The proposed PW-SiamFC++ is also compared with ten state-of-the-art DL-based track-
ers, namely, KYS [25], SiamR-CNN [26], PrDiMP18 [27], D3S [28], SiamGAT [29],
HiFT [2], LightTrack [30], SOAT [31], TransT [32], and AutoMatch [33]. Table 2 shows
the precisions and the FPSs on UAVDT. As is shown, although PW-SiamFC++ (pruning
ratio ρ = 0.4) is not as accurate as TransT, SOAT, AutoMatch and LightTrank, the gap
is less than 3.5% and, remarkably, PW-SiamFC++ is 6 times faster than the first tracker
TransT on GPU. Moreover, when a smaller pruning ratio, i.e., ρ = 0.3, is chosen, PW-
SiamFC++ achieves 81.3% in precision, a smaller gap of 1.3% to the first tracker TransT,
and still gets 259.0 FPS in GPU speed, much faster than the first two Trackers. This
proves, in terms of speed and accuracy, that PW-SiamFC++ can achieve a good balance.

4.3. Ablation Study

Impact of dynamic channel weighting: We finetuned PW-SiamFC++ with and without
the dynamic channel weighting at different global pruning ratios to understand the im-
pact of this proposed component. Specifically, each convolutional layer in the head, neck
and backbone is pruned with the same global ratio, ranging from 0.8 to 0.1. Note that the
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larger the ratio ρ is, the more filters will be pruned. The precisions of PW-SiamFC++
with and without the proposed dynamic channel weighting with respect to the global
pruning ratio are shown in Table 3. As can be seen, the highest precisions are basically
achieved at pruning ratios less than 0.4, which is in line with our expectation on filter
pruning techniques, namely, pruning may compromise models’ accuracy. Surprisingly,
most precisions are improved with the proposed dynamic channel weighting incorpo-
rated, especially at higher pruning ratios. This enables us to maintain favorable precisions
with higher pruning ratios and demonstrates the effectiveness of the proposed dynamic
channel weighting in pursuing a higher global pruning ratio for boosting efficiency.

5. Conclusion

In this work, we use filter pruning and the proposed dynamic channel weighting to trade
off efficiency and precision in UAV tracking and achieve state-of-the-art performance
on four public benchmarks. Experimental results show that the proposed dynamic chan-
nel weighting strategy is beneficial to pursue a higher global pruning ratio when apply-
ing rank-based filter pruning to improve the efficiency of DL-based trackers for UAV
tracking. Remarkably, the proposed PW-SiamFC++ not only significantly improves effi-
ciency over the baseline SiamFC++ but also increases precision on DTB70, UAVDT, and
VisDrone2018, well combating the adverse effects (i.e., a precision drop) of using filter
pruning. It’s worth noting that in this work, we only employ a ranked-based filter pruning
to compress the baseline SiamFC++. Our future works include investigating other filter
pruning methods, better pruning criterion, and other baseline trackers.
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