

Introduction

Face2Exp: utilizes large unlabeled FR datasets to enhance FER

Challenges

- Class imbalance in FER data (a: 1st data bias)
- Distribution mismatch between FR and FER data (b: 2nd data bias)

The image gap between FR and FER data is large

Each column represent the same facial expression.

Motivation

- A base network learns prior expression knowledge from class balanced FER data (to solve (a))
- The circuit feedback mechanism improves the base network with the cognitive differences from the adaptation network (to solve (b))

Contributions

- > A general framework to utilize large unlabeled FR data for other face-related tasks (e.g., gender/race classification, age estimation) that lack high quality data
- Extract de-biased knowledge from auxiliary FR data
- Obtain comparable results to the state-of-the-art FER methods with **10% labeled** FER data

Face2Exp: Combating Data Biases for Facial Expression Recognition Dan Zeng, Zhiyuan Lin, Xiao Yan, Yuting Liu, Fei Wang, Bo Tang

Project website: https://github.com/danzeng1990/Face2Exp.

Method: Meta-Face2Exp

Loss functions $\mathcal{L}_u = CE(\hat{y}_{FR}, \mathcal{A}(x_{FR}; \theta_{\mathcal{A}}))$ $\mathcal{L}_{c} = CE(\mathcal{B}(x_{FR}; \theta_{\mathcal{B}}), \mathcal{B}(Aug(x_{FR}); \theta_{\mathcal{B}})) \quad \mathcal{L}_{f} = f \cdot CE(\hat{y}_{FR}, \mathcal{B}(x_{FR}; \theta_{\mathcal{B}}))$

De-biased Mechanism

 $f = \eta_{\mathcal{A}} \cdot (\nabla_{\theta_{\mathcal{A}}^{(t+1)}} CE(y_{FER}, \mathcal{A}\left(x_{FER}; \theta_{\mathcal{A}}^{(t+1)}\right))^{T} \cdot \nabla_{\theta_{\mathcal{A}}^{(t)}} CE\left(\hat{y}_{FR}, \mathcal{A}\left(x_{FR}; \theta_{\mathcal{A}}^{(t)}\right)\right))$

> 1st term: the gradients of the *new* adaptation network on debiased FER data

> 2nd term: the gradients of the *old* adaptation network on biased FR data

- If two terms have the same/different gradient sign, the base network is updated based on the same/adverse of the current gradients
- > The absolute value of the dot product is the <u>strength</u> of the gradient updates

 $\mathcal{L}_{s} = CE(y_{FER}, \mathcal{B}(x_{FER}; \theta_{\mathcal{B}}))$

The figure shows that FR and FER data align better with our method

Evaluation on class imbalance > De-biased behavior

Happy	92.7	3.6	2.1	0.4	0.3	0.3	0.4	Happy	94.9	2.8	0.7
leutral	3.5	78.5	14.1	0.1	1.6	0.1	1.9	Neutral	4.1	87.8	5.4
A bes	2.1	4.0	91.6	0.4		0.8	1.0	Sad	3.3	6.7	88.5
Actual Anger	6.2	4.3	3.1	75.3	2.5	4.9	3.7	Actual Anger	3.7	4.9	1.2
irprise	2.4	4.9	4.3	1.2	81.8	4.6	0.9	urprise '	1.2	4.9	1.2
Fear Su	5.4	5.4	10.8	2.7	10.8	63.5	1.4	Fear S	4.1	4.1	8.1
sgust	6.9	10.6	17.5	9.4	5.6	5.0	45.0	isgust	8.1	10.0	9.4
ö	Нарру	Neutral	Sad	Anger Predicted	Surprise	Fear	Disgust	۵	Нарру	Neutral	Sad

Meta-Face2Exp

Size of labeled FER data

SL model

AffectNet

Models	SL	Meta-Face2Exp		2Ехр	Models	SL	Meta-Face2Exp		
Data size	100%	1%	5%	10%	Data size	100%	25%	50%	100%
Mean Acc	58.37	53.54	61.66	64.23	Mean Acc	84.16	80.87	85.04	88.54
Std Acc	21.53	14.41	10.69	10.07	Std Acc	15.48	9.43	9.43	10.00

- Significantly lower the std accuracy.

Effect of unbalanced FR data

- Meta-Face2Exp effectively produces low std and high mean accuracy

Experiments

Meta-Face2Exp yields more **balanced** accuracy, despite that it is trained with unbalanced FER data. (RAF-DB dataset)

RAF-DB

• Higher mean accuracy with small labeled data (e.g., 5% AffectNet).

Meta-Face2Exp is general across different FR datasets (i.e., training our model with <u>Webface260M/ VGGFace2</u> yields similar accuracy.)

Conclusion

Combat two data biases: class imbalance and distribution mismatch Two networks constantly complement each other to extract de-biased knowledge through the circuit feedback paradigm

Homepage

