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Abstract— In recent years, the field of unmanned aerial vehicle
(UAV) tracking has grown rapidly, finding numerous applications
across various industries. While the discriminative correlation
filters (DCF)-based trackers remain the most efficient and widely
used in the UAV tracking, recently lightweight convolutional
neural network (CNN)-based trackers using filter pruning have
also demonstrated impressive efficiency and precision. However,
the performance of these lightweight CNN-based trackers is still
far from satisfactory. In the generic visual tracking, emerging
vision transformer (ViT)-based trackers have shown great success
by using cross-attention instead of correlation operation, enabling
more effective capturing of relationships between the target
and the search image. But to best of the authors’ knowledge,
the UAV tracking community has not yet well explored the
potential of ViTs for more effective and efficient template–search
coupling for UAV tracking. In this article, we propose an efficient
ViT-based tracking framework for real-time UAV tracking. Our
framework integrates feature learning and template–search cou-
pling into an efficient one-stream ViT to avoid an extra heavy
relation modeling module. However, we observe that it tends
to weaken the target information through transformer blocks
due to the significantly more background tokens. To address
this problem, we propose to maximize the mutual information
(MI) between the template image and its feature representation
produced by the ViT. The proposed method is dubbed TATrack.
In addition, to further enhance efficiency, we introduce a novel
MI maximization-based knowledge distillation, which strikes a
better trade-off between accuracy and efficiency. Exhaustive
experiments on five benchmarks show that the proposed tracker
achieves state-of-the-art performance in UAV tracking. Code is
released at: https://github.com/xyyang317/TATrack.

Index Terms— Real time, target aware, unmanned aerial vehi-
cle (UAV) tracking, vision transform.
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I. INTRODUCTION

VISUAL tracking is an essential and demanding endeavor
in the realm of computer vision and pattern recognition,

teeming with extensive applications spanning a myriad of
fields [1], [2], [3], [4], [5], [6]. Especially, armed with a
specialized visual tracking algorithm, unmanned aerial vehicle
(UAV), which has recently witnessed a surge in popularity
across a diverse array of applications, can be used for target
following, surveillance, aerial cinematography, aircraft refuel-
ing, search and rescue operations, precision agriculture, and
among others [7], [8], [9], [10]. UAV-based object tracking,
which is called UAV tracking, attempts to infer and anticipate
the location and scale of an arbitrary object in subsequent
aerial image frames given an initial state in the first aerial
image frame [7], [11], [12]. Real-time UAV tracking refers to
a technological feature that enables the accurate, continuous,
and live monitoring and tracking of targets at real-time speed
[not less than 30 frames/s (FPS)] with limited computing
resources onboard a UAV. Although general visual tracking
algorithms can be adapted to UAV tracking directly, UAV
tracking presents several distinctive challenges not typically
found in general visual tracking scenarios. These challenges
encompass extreme viewing angles, motion blur, and signifi-
cant occlusion, all of which can lead to a decline in tracking
algorithms’ precision. Furthermore, UAV tracking imposes
rigorous efficiency requirements due to factors, such as limited
battery capacity, constrained computing resources, and low
power consumption needs for UAVs [2], [4], [13], [14]. As a
result, it is crucial to design UAV tracking algorithms that
successfully strike a balance between efficiency and accuracy,
ensuring optimal operation in demanding conditions.

At present, UAV tracking methods may be roughly cate-
gorized into two distinct types: those based on discriminative
correlation filters (DCFs) and deep convolutional neural net-
works (CNNs). The choice between these two methodologies
often requires balancing the demand for high efficiency
against the need for high precision. DCF-based trackers have
been favored due to their efficient operations in the Fourier
domain [7], [11], [15]. However, they often struggle to achieve
high tracking precision. On the other hand, CNN-based
trackers are well known for their ability to achieve high preci-
sion, but they frequently necessitate substantial computational
resources. This requirement makes them less amenable to
situations demanding high efficiency. To address this trade-off,
researchers have introduced lightweight CNN-based trackers
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for UAV tracking. These trackers employ filter pruning tech-
niques [2], [9], [10], [16] to reduce the number of parameters
in the network, leading to significant improvements in both
precision and efficiency. Very recently, TCTrack [2], a hybrid
deep learning architecture that combines CNN and transformer
models, has been proposed to enhance UAV tracking. The
architecture uses an online temporally adaptive convolution
to enhance the spatial features with temporal information,
and an adaptive temporal transformer to refine the similarity
map. While TCTrack has demonstrated remarkable precision
and efficiency, it involves specific trade-offs. The precision
gain comes at the cost of increased computational demand
and extensive utilization of temporal information, which has
an adverse effect on the tracker’s overall speed. In addition,
the increased complexity of the model demands a larger
quantity of training data and lengthier training times. It is
more important to note that the adaption of transformer
architecture in TCTrack is concentrated primarily on refining
the similarity map rather than honing the template–search
coupling. Nonetheless, recent advancements have shown that
template–search coupling with vision transformers (ViTs) can
be notably successful in generic visual tracking [3], [17],
[18], [19], [20], [21]. We believe that it is worthwhile to
explore the potential of ViTs to deliver more effective and
efficient template–search coupling for UAV tracking. But to
best of the authors’ knowledge, the potential of ViTs to deliver
more effective and efficient template–search coupling for UAV
tracking remains largely unexplored in the UAV tracking
community. One possible reason for this is that studies focused
on general visual tracking did not pay enough attention to
efficiency, leading to a large number of intimidating model
parameters and unsatisfactory running speed. This, in turn, has
deterred many beneficial explorations in this area. Therefore,
developing efficient ViT-based trackers for real-time UAV
tracking is still an interesting and challenging problem that
needs to be explored.

In this article, we dedicate our effort to developing effi-
cient trackers with ViTs for real-time UAV tracking. In our
framework, feature learning and template–search coupling are
integrated into an efficient one-stream ViT to avoid inefficient
template–search coupling by correlation or heavy relation
modeling modules. We demonstrate that it is feasible to create
ViT-based trackers for UAV tracking while striking a favor-
able balance between precision and efficiency. Surprisingly,
we show that the ViT-based trackers we propose can all
operate at real-time speeds with only a single CPU. In addi-
tion, we bring to light a previously unnoticed issue when
performing template–search coupling with ViTs. Specifically,
the template and search image patches have unequal sizes,
which leads to an abundance of background tokens relative
to target tokens. Given that transformer blocks are intended
to represent target/background tokens using all input tokens,
the target information are prone to being diminished through
transformer blocks due to its minority status. To address this
problem, we propose maximizing the mutual information (MI)
between the template image and the corresponding feature
representation generated by the ViT, so that crucial target
information are preserved in this process. At its core, the

MI we measure reveals the dependency between the input
template and its feature representation, by maximizing which
the feature representation of the template is expected to
maintain the strongest dependency on the target template.
We refer to this adapted ViT as a target-aware ViT, which
forms the basis of our proposed target-aware tracker, termed
TATrack. It is worth noting that the maximization of MI
is solely conducted during the training process, ensuring no
additional computational burden is added during the inference
phase. To further enhance efficiency, we introduce a novel
knowledge distillation method based on maximizing MI. This
approach compresses the tracker, striking a better balance
between accuracy and efficiency. By maximizing MI between
the feature representations of the teacher and student models,
we ensure that the student model captures the most pertinent
information from the teacher model’s representation. This
yields better generalization and performance, especially in the
presence of noise, as MI is less sensitive to noise and outliers
compared with the widely used mean squared error (MSE).
A selection of five efficient ViTs are chosen for feature extrac-
tion and template–search coupling to validate the proposed
method. Extensive experiments on a comprehensive range of
five benchmarks provide solid evidence that our method is
able to deliver cutting-edge performance. As shown in Fig. 1,
while the precision of CNN-based trackers is basically above
that of DCF-based ones, our ViT-based trackers surpass CNN-
and DCF-based trackers consistently in precision. Moreover,
our methods also outperform several DCF- and CNN-based
ones in terms of running speeds. Note that the speed of
DCF-based trackers is evaluated on a CPU while that of CNN-
and ViT-based ones is evaluated on a graphics processing unit
(GPU). And, our TATrack-DeiT sets a new record with a
precision of 84.9 and runs efficiently at around 242.3 FPS.
Our contributions can be summarized as follows.

1) We propose to develop real-time UAV trackers based on
efficient ViTs, particularly in a unified framework. The
substantial improvement in tracking precision at favor-
able speeds highlights the fruitfulness and significance
of our effort. We anticipate that our work will inspire
future advancements in this direction.

2) We propose to learn target-aware ViTs by maximizing
the MI between the template image and its feature
representation for UAV tracking. The proposed tracker,
named TATrack, has proven to be an efficient and
effective tracker for real-time UAV tracking.

3) We propose a novel MI maximization-based knowledge
distillation to further enhance efficiency, with empirical
evidence showing a significant increase in tracking speed
while only minimally reducing accuracy.

4) Our TATrack sets a new state-of-the-art record on
five challenging benchmarks, namely, DTB70 [22],
UAVDT [23], VisDrone2018 [24], UAV123 [25], and
UAV123@10 FPS [25].

The rest of this article is organized as follows. Section II
presents an overview of the previous research related to
this study. Section III revisits self-attention in the ViT.
In Section IV, we detail the methodology of the proposed

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on November 19,2024 at 15:41:03 UTC from IEEE Xplore.  Restrictions apply. 



LI et al.: LEARNING TARGET-AWARE ViTs FOR REAL-TIME UAV TRACKING 4705718

Fig. 1. Compared with DCF-based, CNN-based, and ViT-based lightweight trackers, our ViT-based trackers surpass CNN- and DCF-based trackers consistently
in precision, and our tracker TATrack-DeiT sets a new record with 84.9 precision and still runs efficiently at around 242.3 FPS. Note that the speed of DCF-based
trackers is evaluated on a single CPU while those of CNN- and ViT-based trackers are evaluated on a single GPU.

technique. Section V outlines the conducted experiments and
discusses their results. Finally, Section VI provides the con-
clusion and insights drawn from this article.

II. RELATED WORKS

This section offers a brief survey on visual tracking methods
and ViTs, including DCF- and deep learning (DL)-based
tracking approaches and the application of ViTs to visual
tracking, based upon which the motivations of our work are
highlighted.

A. Visual Tracking

When it comes to modern visual trackers, there are two main
classes: DCF-based trackers and DL-based trackers. Within the
context of UAV tracking, DCF-based trackers are preferred for
their high efficiency, since fast Fourier transform (FFT) allows
correlation to be evaluated in the frequency domain, and the
handcrafted features they often use are computationally very
effective [2], [4], [7], [9], [10], [15]. However, despite their
commendable efficiency, DCF-based trackers often struggle
to maintain robustness under challenging conditions due to
the limited representation capacity of handcrafted features
they rely on [4], [7], and [11]. Many recent studies have
introduced DL-based trackers to enhance tracking precision
and robustness in UAV tracking [2], [8], [26]. However,
they often lack efficiency compared with DCF-based trackers.
To address this, researchers have explored model compression
techniques to reduce DL-based model sizes and enhance
efficiency [9], [10]. While promising, these techniques struggle
to maintain satisfactory tracking precision. In addition, these
DL-based trackers for UAV tracking face challenges with
ineffective template–search coupling by correlation. Recently,
there has been an increasing focus on developing succinct and
unified frameworks for generic visual tracking using ViTs. For
instance, Xie et al. [17] proposed a Siamese-like dual-branch
network that utilizes ViTs to learn features from matching
and ultimately match based solely on Transformers. To unify
target information integration and feature extraction into a

tracking framework, Cui et al. [18] proposed a mixed attention
module (MAM) based on Transformers. Ye et al. [3] proposed
a one-stream tracking framework that unifies feature learning
and relation modeling using ViTs. Although the use of ViTs
in a unified tracking framework has demonstrated promise
in elevating the accuracy and efficiency of generic visual
tracking, their significant parameter sizes pose a challenge for
deploying them in real-time tracking applications, particularly
in UAV tracking. In this article, we explore adapting more
efficient ViTs for real-time UAV tracking, which, to our
knowledge, has not been well studied before.

It is worthy noting that there are several works closely
related to our study, which also aim at enhancing target
awareness of trackers for visual tracking. For example, Li et al.
[27] proposed a novel scheme to learn target awareness by
developing a regression loss and a ranking loss to guide the
generation of target-active and scale-sensitive features. This
framework is based on a Siamese matching network and
determines the significance of each convolutional filter and
chooses target-aware features based on activations to represent
the targets. Guo et al. [28] proposed to learn target-aware
representation for visual tracking via informative interactions.
The Siamese-like backbone networks (InBNs), whose central
component is a general interaction modeler (GIM) that injects
the target information into various stages of the backbone
network, were used to target awareness by executing numerous
branchwise interactions inside them. Despite the same end of
target awareness, our approach is quite different from these
methods. On the one hand, in our method template and search
images are coupled in a unified framework rather than a
Siamese-like manner; on the other hand, we enforce target
awareness by maximizing the MI between the input template
and its feature representation, which is quite different from the
methods just mentioned.

B. Vision Transformers

Transformers, initially designed for natural language pro-
cessing (NLP) [29], have recently shown great promise in
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computer vision tasks [30], [31]. The first attempt to apply
transformer models to vision tasks was made by detection
transformer (DETR) [32], which demonstrated its effectiveness
in object detection. ViT [30] was the first to directly apply
transformers on nonoverlapping image patches for image
classification, achieving competitive results with traditional
CNNs. DeiT [33] improved the training pipeline of ViT
by introducing distillation, which eliminates the need for
large-scale pretraining. Many follow-up works have been
proposed to refine the architecture of ViT and build variants
of token mixers [34], [35], such as local attention [31], spatial
MLP [36], and pooling mixer [37], aiming to further improve
its performance. The recent application of ViT in learning the
connections among pixels within distinct small segments of an
image has been employed to calculate the correlation between
template and search images in visual tracking [3], [17], [18],
[19], showcasing remarkable results. More importantly, these
transformer-based trackers combined feature learning with
template–search coupling into a unified framework in visual
tracking, breeding a new tracking paradigm. However, these
methods failed to recognize the fact that the background tokens
significantly outnumber the target ones as the search image is
expected to be obviously larger than the template image to deal
with large translations of targets between neighboring frames.
This disproportion could diminish the target information as the
background information prevails in the basis for representing
tokens via transformer blocks.

To tackle this issue and strive for efficient ViT-based track-
ers in UAV tracking, in this work, we propose to maximize
the MI between the template image and its feature repre-
sentation generated by the ViT. Learning a representation
that maximizes/minimizes the MI between the input and its
representation, possibly subject to some structural constraints,
where MI is a measure of the mutual dependence between the
two random variables, is the so-called InfoMax principle [38].
In this article, we use MI to quantify the “amount of infor-
mation” obtained about the feature representation of the target
with ViT by observing the template image. To maximize MI,
our goal is to retain as much target information as possible in
the feature representation produced by ViTs. This kind of ViT,
which aims to keep the target information intact, is referred
to as target aware. By maintaining target awareness, we strive
to enhance the tracking precision of ViTs in UAV tracking
applications. Since this procedure takes place solely during
the training phase, it does not impose any extra computational
load during the inference stage. This is well-suited for UAV
tracking, where efficiency is of paramount importance.

C. Knowledge Distillation

Knowledge distillation is a technique that compresses mod-
els, transferring knowledge from a complex “teacher” model to
a simpler “student” model [39], [40]. Its main aim is to distill
the teacher model’s knowledge into a more compact form,
making it suitable for resource-constrained environments [41].
Leveraging the teacher model’s knowledge enables the student
model to achieve comparable or superior performance with
reduced computational resources and memory usage [42].

In knowledge distillation, knowledge types, distillation strate-
gies, and the teacher–student architectures play a crucial role
in student learning [40]. Knowledge distillation typically falls
into three categories based on the knowledge type: response-
based, feature-based, and relation-based distillation [40], [41],
[43]. It has been widely used in various machine learning
tasks, including image classification [44], object detection
[45], [46], and neural machine translation [47], to improve
the efficiency and effectiveness of deep learning models.
Recently, various techniques in knowledge distillation are
exploited to transfer knowledge from teacher models to student
models effectively, ultimately improving the efficiency of
DL-based trackers for visual tracking. For example, Li et al.
[48] presented a mask-guided self-distillation to compress
the models of Siamese-based visual trackers, which enables
Siamese-based visual trackers to capture crucial knowledge for
effecting the performance of tracking. Sun et al. [49] presented
a lightweight dual Siamese network for onboard hyperspectral
object tracking in which a joint spatial–spectral knowledge
distillation method is designed to teach a lightweight dual
Siamese tracker to learn from a deep tracker. Zhao et al. [50]
introduced a distillation-ensemble-selection framework, where
several student trackers are crafted through knowledge distil-
lation from a designated teacher tracking model. An ensemble
module amalgamates the outputs of these student trackers
using a learnable fine-grained attention module. During the
online tracking phase, a selection module dynamically man-
ages the tracker’s complexity by pinpointing a suitable subset
of candidate tracker models. Although these techniques have
proven effective in improving the efficiency of DL-based track-
ers for visual tracking, they are primarily Siamese-based and
customized for specific tracking frameworks and architectures.
Adapting them to our ViT-based approach is not straight-
forward due to differences in methodology and architecture.
In this work, we introduce a simple yet effective knowledge
distillation method based on maximizing MI. To ensure that
the student model captures the most pertinent information from
the teacher model’s representation, we propose maximizing MI
between the feature representations of the teacher and student
models. This approach leads to improved generalization and
performance, particularly in noisy environments, as MI is less
affected by noise and outliers compared with the commonly
used MSE.

III. REVISIT SELF-ATTENTION IN VIT

It is well-established that ViTs can outperform CNNs, such
as ResNets, in image recognition [51]. The robustness and
superiority of ViT features can be primarily attributed to the
flexible and dynamic receptive fields that are made possible
by the self-attention mechanism. Self-attention operates by
calculating a weighted average of feature representations. The
weights are determined based on the similarity score between
pairs of representations. This allows the model to assign higher
weights to more relevant features, resulting in a more accurate
representation of the data. By incorporating self-attention, ViT
models can effectively capture long-range dependencies and
establish meaningful connections between different parts of the
input data. This flexibility and dynamic nature of the receptive
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Fig. 2. (Left) Overview of our framework. It is composed of a single efficient ViT-based backbone used for feature learning and template–search coupling
and a localization head. (Right) Details of the MI maximization module. Note that {Z} indicates a batch of Z , and {Z ′

} denotes the randomly shuffled of {Z}.

fields contribute to the exceptional performance of ViT models
in various computer vision tasks. Nevertheless, caution should
be exercised when applying ViT to visual tracking as we will
discuss in the following.

Formally, an input sequence of n tokens of dimensions d,
X ∈ Rd×n , is first projected using three matrices WQ ∈ Rdq×d ,
WK ∈ Rdk×d , and WV ∈ Rdv×d , with dk = dq , to extract feature
representations Q, K , and V , respectively, which are referred
to as query, key, and value correspondingly. More specific,
Q = WQX = {q1, . . . , qn}, K = WKX = {k1, . . . , kn},V =

WVX = {v1, . . . , vn}. Finally, self-attention can be written as
follows:

Y = Attention(Q, K , V ) = Softmax
(

K T Q/
√

dq

)
V

= {y1, . . . , yn} (1)

where Softmax(·) denotes a rowwise softmax normalization
function and Y is the representation of X after applying the
self-attention. Thus, each token of Y depends on all tokens of
X . To be more specific, for a given token xi , its representation
after a self-attention layer is

yi = Attention(qi , K , V )

=

n∑
l=1

Softmax
(

kT
l qi/

√
dq

)
vl =

n∑
l=1

si,lvl (2)

where si,l := Softmax(kT
l qi/(dq)

1/2) ≥ 0 is considered a
similarity score between token xi and xl . Let xi ∼ x j be that
token xi and x j are semantically related. Denoted by IR(i) the
index set that indexes the tokens semantically related to xi ,
IRc(i) its complementary set, i.e., IR(i) ∪ IRc(i) = {1, . . . , n}.
As yi is a convex combination of {vl}

n
l=1,

∑
l∈IRc (i) si,l is

expected to vanish or be very small; otherwise, yi is partially
represented by distractive or noise information for

∑n
l=1 si,lvl

is semantically unrelated to xi . However,
∑

l∈IRc (i) si,l increases
as |IRc(i)| [i.e., the cardinality of the IRc(i)] grows, because

si,l > 0 is always true in practice. In the specific visual track-
ing scenario concerned here, when xi represents a target token,
the set |IRc(i)| is notably larger than |IR(i)|. Typically, |IRc(i)|
is more than four times larger than |IR(i)| to account for
significant target translations. As a result, the information in yi

that is not semantically related to xi can occupy a significant
portion, which can potentially weaken the representation of the
target information. To combat the loss of target information,
in this work, we propose to maximize the MI between the
template image and its feature representation produced by ViT,
which will be detailed in Section IV.

IV. METHODOLOGY

An overview of the proposed method TATrack is illustrated
in Fig. 2. Our framework consists of a target-aware ViT-
based backbone, denoted by TA-ViT, and a prediction head.
The backbone carries out feature learning and template–search
coupling concurrently, allowing both processes to interact
throughout the procedure. This not only streamlines the pro-
cess but also enhances its effectiveness, as feature learning
becomes more specialized while template–search coupling is
executed more comprehensively to better capture the corre-
lation. The input to TATrack includes a target template Z
and a search image X . They are first split and flattened into
sequences of patches, which are then tokenized by a trainable
linear projection layer. This process is called patch embedding
and results in K tokens, which are formulated by

t0
1:K = E(Z , X) ∈ RK×d (3)

where d denotes the embedding dimension of each token,
token sequences t0

1:Kz
and t0

Kz+1:K correspond to the template
and search image, respectively, such that K = Kz +Kx . Let T l

be the transformer block at layer l, which transforms all tokens
from layer (l −1) via t l

1:K = T l(t l−1
1:K ). Then, the backbone TA-

ViT, denoted by B, can be formulated by

Y = B(Z , X; ϕ) = T L
◦ T L−1

◦, . . . , ◦T 1
◦ E(Z , X; ϕ) (4)
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where ◦ denotes the composition operation and ϕ parameter-
izes B. The core idea of TA-ViT is that the MI between the
template image and its feature representation is maximized,
which will be detailed in Section IV-A.

A. Learn Target-Aware ViTs With MI Maximization

In order to provide context for achieving target-aware ViTs
with MI maximization, it is important to first understand some
key concepts related to this approach. MI maximization is
a technique used in unsupervised learning to measure the
amount of information that is shared between two random
variables. Let x ∈ X and y ∈ Y be two random variables.
The MI between x and y, denoted by I (x, y), formally can
be expressed as follows:

I (x, y) = Ep(x,y)

[
log

p(x, y)

p(x)p(y)

]
= DKL(p(x, y)||p(x)p(y)) (5)

where p(x, y) denotes the joint probability distribution, p(x)

and p(y) are the marginals, and DKL is the Kullback–Leibler
divergence (KLD). In practice, estimating MI can be chal-
lenging since we typically have access to samples but not
the underlying distributions [52]. In this work, we utilize
the MI estimator Deep InfoMax [53], which is based on
Jensen–Shannon divergence (JSD) instead of KLD, to learn
target-aware ViTs for UAV tracking. The choice of JSD as
the divergence measure in the Deep InfoMax estimator offers
several advantages. JSD is a symmetrized version of the KLD,
which makes it more robust and less sensitive to differences in
the distributions being compared. This can be beneficial when
dealing with samples and limited access to the true underlying
distributions. This JS MI estimator, denoted by Î(JSD)(x, y; θ),
is defined as follows:

Î(JSD)(x, y; θ)

= Ep(x,y)

[
−α(−Tθ (x, y))

]
− Ep(x)p(y)

[
α(Tθ (x, y))

]
(6)

where Tθ : X × Y → R is a neural network parameterized
by θ , α(z) = log(1 + ez) is the softplus function. The right
part of Fig. 2 depicts the structure of the Jensen–Shannon
MI estimator. Note that {Z} indicates a batch of Z , and
{Z ′

} denotes the randomly shuffled of {Z}, ensuring Z is
linearly independent of t L

1:Kz
to simulate the marginal dis-

tribution between Z and t L
1:Kz

. We propose to maximize the
Jensen–Shannon MI estimator in the pursuit of target-aware
ViTs for UAV tracking. Specifically, we aim to maximize the
following objective:

Î(JSD)
(

Z , t L
1:Kz

; θ, ϕ
)

= Î(JSD)
(

Z , [B(Z , X; ϕ)]1:Kz
; θ, ϕ

)
(7)

where t L
1:Kz

= [B(Z , X; ϕ)]1:Kz corresponds to the feature
representation of the target template Z with the ViT B. The
loss we use for MI maximization is finally defined as follows:

LMI = −Î(JSD)
(

Z , t L
1:Kz

; θ, ϕ
)
. (8)

Fig. 3. Framework of the proposed MI maximization-based knowledge
distillation.

B. MI Maximization Knowledge-Based Distillation

TATrack aims to become an efficient UAV tracker, striv-
ing to enhance efficiency without compromising accuracy
too much. To achieve this goal, we propose the MI
maximization-based distillation method to make TATrack more
efficient, the distillation structure is as shown in Fig. 3.
Our method is feature-based, meaning that a smaller model
(student) learns from a bigger one (teacher) by focusing on the
features the bigger model has learned. Instead of copying the
exact predictions, the smaller model tries to match the internal
features of the bigger model. This helps the smaller model
to learn important features and can improve its performance,
especially when resources are limited. Instead of relying on
the commonly used MSE to measure the difference between
the two feature representations, we propose maximizing the
MI between the feature representations of the teacher and
student models, which yields the better generalization and
performance, especially in the presence of noise, as MI is less
sensitive to noise and outliers compared with MSE [39].

In addition, the choice of teacher–student architectures
is pivotal in the process of knowledge distillation. These
architectures determine how the knowledge learned by the
teacher model is transferred to the student model. By selecting
appropriate architectures, we can ensure that the student model
effectively learns from the teacher’s knowledge, leading to
improved performance and efficiency. Considering the unlim-
ited choices of student models, we opt for a self-similar
architecture to construct the student model, specifically, the
student has the same architecture as the teacher but with
a smaller ViT as backbone (with fewer ViT blocks), which
offers the following advantages. First, this choice simplifies
the design process, which facilitates easier implementation
and training, as well as better interpretability of the model’s
behavior. Second, it promotes the modularity and scalability,
allowing for easy expansion or modification of the model
as needed. Given the teacher–student architecture, we use
the Jensen–Shanno MI estimator to implement the MI maxi-
mization for knowledge distillation, resulting in the objective
function of our MI maximization knowledge-based distillation

LD = −Î(JSD)
(
t L
1:Kz

, t l
1:Kz

; θ ′
)

(9)

where t l
1:Kz

represents the features of the last layer of the
student model and t L

1:Kz
represents the features of the last layer

of the teacher model, Tθ ′ : X × Y → R is a neural network
parameterized by θ ′ as in Section IV-A. In distillation training,
the student model is trained with the weighted sum of LD
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and the total loss employed during the training of the teacher
model.

C. TATrack for UAV Tracking

TATrack is a target-aware tracking framework specifi-
cally designed for real-time UAV tracking, which leverages
a target-aware ViT-based backbone, i.e., TA-ViT, coupled
with a prediction head to improve the tracking performance.
The framework aims to streamline the tracking process by
simultaneously learning specialist features and conducting
template–search coupling and to enhance target information in
the feature representation. In this section, we depict the overall
architecture of the TATrack and describe the prediction head
and the total loss for training TATrack.

1) Overall Architecture: Based on TA-ViT, we build our
TATrack, a compact end-to-end tracking framework for UAV
tracking. Compared with other prevailing UAV trackers with
separate processes of feature extraction and template–search
coupling, it leads to a more compact and neat tracking pipeline
with just a single backbone and a tracking head. The overall
architecture is illustrated in Fig. 2. The input of TATrack
is a pair of images, i.e., the template Z ∈ R3×Hz×Wz and
the search image X ∈ R3×Hx ×Wx . Suppose they are split
into patches of size P × P , then the number of patches
of Z and X are Kz = Hz Wz/P2 and Kx = Hx Wx/P2,
respectively. Note that Kx is usually significantly larger than
Kz to deal with large translation, which, therefore, gives rise
to the problem as discussed in Section III. Given the feature
representation t L

1:K achieved by TA-ViT, the part corresponding
to the search image (i.e., t L

Kz+1:K) is supposed to have captured
the correlation between the template and the search image.
This part is subsequently fed into the prediction head for
classification and regression tasks.

2) Prediction Head and Loss: Drawing inspiration from
the corner detection head in [3] and [18], we utilize a
prediction head C based on a fully convolutional network,
comprising several convolutional-batch normalization-rectified
linear unit (Conv-BN-ReLU) layers, for the direct estimation
of the target’s bounding box. The output tokens t L

Kz+1:K, which
correspond to the search image, are initially reinterpreted
into a 2-D spatial feature map before being input into the
prediction head. This results in a target classification score
p ∈ [0, 1]

Hx /P×Wx /P , a local offset o ∈ [0, 1]
2×Hx /P×Wx /P ,

and a normalized bounding box size s ∈ [0, 1]
2×Hx /P×Wx /P .

The initial estimation of the target position is determined
by the maximum classification score, denoted by (xc, yc) =

argmax(x,y)p(x, y). The final target bounding box is then
estimated based on this crude position by

{(xt , yt ); (w, h)} = {(xc, yc) + o(xc, yc); s(xc, yc)}. (10)

For the tracking task, we employ the weighted focal loss [54]
for classification purposes and a mix of L1 loss and GIoU
loss [55] for bounding box regression. Finally, the overall loss
function is

Loverall = Lcls + λiouLiou + λL1LL1 + ρLMI (11)

where the constants λiou = 2 and λL1 = 5 are set as in [3]
and [18], ρ is set to 10−6. Note that ρ is set to so small

a value can be justified by the following reasons. Given
that the target-awareness loss function LMI as an auxiliary
element to the primary tracking task, it is not intended to
disproportionately influence the total loss Loverall; hence, it is
not set excessively high. In addition, LMI often yields larger
values compared with the other components, necessitating
a relatively small weight to appropriately scale its impact.
Finally, ρ is determined empirically. Our framework is trained
end-to-end with the overall loss Loverall after the pretrained
weights of the ViT for image classification are loaded. After
this training, we employ the proposed framework of MI
maximization-based knowledge-based distillation to obtain a
student model that demonstrates a better trade-off between
accuracy and efficiency. Specifically, during the distillation
phase, we add the distillation loss LD to the overall loss from
the preceding training stage, resulting in the overall loss L∗

overall
for distillation training as follows:

L∗

overall = Loverall + σLD (12)

where the balance coefficients in Loverall remain the same as
in training the teacher model, and the weight σ of LD is set
to 5.

V. EXPERIMENTS

In this section, our method is comprehensively evaluated
on five well-known UAV tracking benchmarks, i.e., DTB70
[22], UAVDT [23], VisDrone2018 [24], UAV123 [25], and
UAV123@10 FPS [25]. DTB70 [22] is a collection of 70 UAV
sequences that, in addition to focusing on the problem of
severe UAV motion, also includes various cluttered scenes and
objects of varied sizes. UAVDT [23] is mainly used for vehicle
tracking with various weather conditions, flying altitudes, and
camera views. VisDrone2018 [24] is from a single object
tracking challenge held in conjunction with the European Con-
ference on Computer Vision (ECCV2018), it aims to evaluate
drone tracking algorithms. UAV123 [25] is a large-scale aerial
tracking benchmark involving 123 challenging sequences with
more than 112k frames. UAV123@10 FPS [25] is in order
to explore the effect of camera capture speed on tracking
performance, which is created by sampling the UAV123
benchmark from the original 30–10 FPS. On a computer with
an NVIDIA TitanX GPU, 16-GB RAM, and an i9-10850K
processor (3.6 GHz), all assessment experiments are carried
out. For a full comparison, 34 state-of-the-art trackers are used
for comparison. Their results were obtained by running the
official codes with the necessary hyperparameters. We separate
them into two groups for a clearer comparison: 1) lightweight1

trackers [2], [7], [8], [9], [10], [11], [56], [57], [58], [59],
[60], [61], [62], [63], [64], [65], [66], [67], [68] and 2) deep
trackers [3], [27], [69], [70], [71], [72], [73], [74], [75], [76],
[77], [78], [79], [80].

A. Implementation Details

In this section, we outline the key components and steps
involved in the implementation of our tracking method. This

1The term “lightweight trackers” in this context refers to trackers that are
either based on DCF or specifically developed for UAV tracking applications.
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TABLE I
PRECISION (PREC.), SUCCESS RATE (SUCC.), AND SPEED (FPS) COMPARISON BETWEEN TATRACK AND LIGHTWEIGHT TRACKERS ON FIVE UAV

TRACKING BENCHMARKS. RED, BLUE, AND GREEN INDICATE THE FIRST, SECOND, AND THIRD PLACES. NOTE THAT THE PERCENT SYMBOL
(%) IS OMITTED FOR ALL PREC. AND SUCC. VALUES

description aims to provide a clear understanding of the
procedure and the elements used throughout the process. Our
tracking framework is implemented in Python using PyTorch
1.9.0, with CUDA version 10.2. The model is trained and
tested on a computer with an NVIDIA Titan X GPU.

1) Model: Our approach allows for the creation of various
trackers using different ViT-based backbones. In this article,
we use five efficient ViTs, including ViT-tiny [30], XCiT-
tiny [81], DeiT-tiny [33], PiT-tiny [30], and A-ViT-tiny [82],
for DeiT-tiny, we also take its first six layers as the ViT
backbone of the student model for knowledge distillation
training, denoted by DeiT-tiny-S. The above models are used
as the backbone to construct six proposed trackers for eval-
uation. resulting in six trackers: TATrack-ViT, TATrack-DeiT,
TATrack-PiT, TATrack-XCiT, TATrack-A-ViT, and TATrack-
DeiT-D, respectively, where TATrack-DeiT-D is the student
model associated with the teacher model TATrack-DeiT. The
head of our model is a lightweight FCN, consisting of four
stacked Conv-BN-ReLU layers for each of the three out-
puts. The sizes of the template and search image in all the
proposed trackers are set to 128 × 128 and 256 × 256,
respectively.

2) Training: The training pipeline is the same for all five
trackers. The combination of the training sets from GOT-
10k [83], LaSOT [84], COCO [85], and TrackingNet [86] are
used for training. The batch size is 32. We use the AdamW
optimizer [87] to train the model, and we set the weight decay
to 10−4, as well as the initial learning rate for the backbone to
4 × 10−5. The number of training epochs is set to 300, with
60k image pairs for each epoch. After 240 epochs, the learning
rate is reduced by a factor of 10. During distillation, we utilize
the model trained in the previous stage as the teacher. The
parameters of the teacher model are frozen to provide guidance
to train the student with the proposed knowledge distillation,
the training pipeline of which is the same as training the
teacher model.

3) Inference: The Hanning window penalty is used during
inference, in accordance with common practice [88], to impose
positional prior on tracking. In more detail, the Hanning
window of the same size is simply multiplied by the clas-
sification map, and the box with the greatest score after the
multiplication is chosen as the tracking result.

B. Comparison With Lightweight Trackers

In this section, our TATrack is compared with 19 existing
lightweight trackers on five UAV tracking benchmarks. The
precision, success rate, and speed of the competing trackers
on the five benchmarks are shown in Table I. We also provide
a qualitative comparison between our method and state-of-the-
art lightweight trackers.

1) Overall Performance Evaluation: The overall perfor-
mance of our TATrack with the competing trackers on the
five benchmarks is shown in Table I. It can be seen that
our TATrack-* outperforms all other trackers on all bench-
marks, in terms of average precision (Prec.) and success
rate (Succ.). The highest average Prec. and Succ. among
the DCF-based trackers are achieved by RACF [63], which
are 74.6% and 51.2%, respectively. F-SiamFC++ [10] and
TCTrack [2] attain the highest average Prec. and Succ. among
the CNN-based trackers, with respective values of 78.5% and
59.0%. The lowest average Prec. and Succ. among the pro-
posed ViT-based trackers are 81.3% and 62.5%, respectively,
achieved by TATrack-XCiT and TATrack-PiT correspondingly.
Note the apparent gaps between the highest performances
of either DCF-based trackers or CNN-based trackers and
the lowest ones of our methods. They are 6.7% and 11.3%
over the DCF-based trackers, 2.8% and 3.5% over the CNN-
based ones. Among other ViT-based trackers, LiteTrack [66]
achieved the highest average Prec. and Succ., at 82.2% and
62.9%, respectively. But LiteTrack falls significantly behind
our TATrack-DeiT by 2.7% and 2.3% in average Prec. and
Succ., respectively, and is even 1.2% and 1.0% lower than the
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Fig. 4. Precision plots of attribute-based evaluation of all competing UAV trackers on UAV123 [25]. The precision at 20 pixels is used for ranking and
marked in the precision plots. Our TATrack achieves top-five precision at all these attributes.

fourth-ranked TATrack-ViT of our trackers. More remarkable,
the highest average Prec. and Succ. among the proposed
trackers, which are achieved exclusively by TATrack-DeiT, are
84.9% and 65.2%, respectively, significantly surpassing those
of DCF-based, CNN-based, and other ViT-based trackers.
Specifically, the average Prec. gains are up to 10.3%, 6.4%,
and 2.7%, respectively, while the gains of average Succ.
are up to 14.0%, 6.2%, and 2.3%, respectively. In terms of
GPU speed, the top-ranked and second-ranked trackers are the
proposed TATrack-DeiT-D and TATrack-PiT, with respective
320.7 and 271.6 FPS. Although F-SiamFC++ [10] achieves
the third place in GPU speed having 255.4 FPS, its average
Prec. and succ. are significantly lower than ours. As for
CPU speed, except for our TATrack-DeiT-D, all algorithms
achieving above 60 FPS are among the DCF-based trackers,
suggesting that the most efficient UAV trackers are still DCF-
based. However, these fastest DCF-based trackers have much
lower Prec. and Succ. than our methods. For example, KCF
[56], the fastest one, gets only 31.6% in average Succ., about
half of that of our methods. And, these DCF-based methods
usually require a considerable cost to improve tracking preci-
sion. For example, RACF [63] is the best among DCF-based
trackers in terms of Prec. and Succ., but it runs at only
35.6 FPS, obviously lower than the slowest CPU speed of our
trackers. Despite the speeds of CNN-based and our ViT-based
trackers are close, the Prec. and Succ. of the latter significantly
outperform the former overall.

To provide a more compelling demonstration of the effec-
tiveness of the proposed method, a comparative analysis of
floating point operations per second (FLOPs) and Params.
(number of parameters) based on DL-based approaches is also
shown in Table I. As evident from the table, our method
exhibits a relatively lower parameter count and reduced
computational complexity when compared to state-of-the-art

lightweight methods. The parameters of our trackers are
fewer than those of all CNN-based ones. The FLOPs of all
CNN-based trackers except P-SiamFC++ and F-SiamFC++

are above 7.0 GMac but those of our methods are below
3.0 GMac. For a more specific example, TATrack-PiT has
2.81 million fewer parameters than TCTrack and its FLOPs are
only about one-eighth of TCTrack’s. Nevertheless, our method
achieves superior performance with an average precision and
success rate that are 3.1% and 3.5% higher than TCTrack,
respectively. These quantitative comparisons on efficiency
further affirm the advantages of our approach compared with
existing methods for real-time UAV tracking. In other ViT-
based trackers, except for the FLOPs of HiT [67], the FLOPs
and Params. of other methods are higher than ours. Our
TATrack-PiT has similar FLOPs to HiT, but in comparison
with TATrack-PiT, HiT demonstrates lower accuracy and
speed. Remarkably, all the proposed ViT-based trackers can
run at a real-time speed on a single CPU,2 and the proposed
TATrack-DeiT sets a new record of performance for real-time
UAV tracking, justifying the effectiveness of the proposed
methods.

2) Attribute-Based Evaluation: The proposed TATrack out-
performs all the other DCF- and CNN-based UAV trackers
in most attributes defined, respectively, in the five bench-
marks. Examples of precision plots are shown in Fig. 4.
As can be seen, in the situations of camera motion, viewpoint
change, aspect ratio change, similar objects, partial occlusion,
and illumination variation, TATrack considerably enhances its
performance compared to other trackers. For example, our
TATrack outperforms all the competing trackers in precision
by more than 6.0% on camera motion, similar objects, partial

2Note that the real-time performance discussed in this article can be only
generalized to platforms similar to or more advanced than ours.
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Fig. 5. Qualitative evaluation on five video sequences from, respectively, UAV123@10 FPS [25], DTB70 [22], VisDrone2018 [24], UAVDT [23], and
UAV123 [25] (i.e., wakeboard3, ChasingDrones, uav0000294_00000_s, S1201, and car11).

TABLE II
COMPARISON BETWEEN TATRACK-DEIT AND DEEP-BASED TRACKERS ON FIVE UAV TRACKING DATASETS. RED, BLUE,

AND GREEN INDICATE THE FIRST, SECOND, AND THIRD PLACES

occlusion, and illumination variation. This validates the effec-
tiveness of the proposed method in these challenging cases
considered in the benchmarks.

3) Qualitative Evaluation: Some qualitative tracking results
of TATrack and eight top trackers, i.e., TCTrack, HiFT,
RACF, ECO-HC, AutoTrack, ARCF-HC, P-SiamFC++, and
F-SiamFC++ are shown in Figs. 5 and 6. The former shows

examples of our method performing better than other trackers,
while the latter shows examples of our method failing to
track. Figs. 5 and 6 each showcase five video sequences
from five different benchmarks. For the former, the sequences
include wakeboard3, ChasingDrones, uav0000294_00000_s,
S1201, and car11. For the latter, the sequences are Animal2,
uav_car2_s, uav8, S0501, and uav0000074_01656_s. In order
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Fig. 6. Qualitative evaluation on five video sequences from, respectively, DTB70 [22], UAV123 [25], UAV123@10 FPS [25], UAVDT [23], and VisDrone2018
[24] (i.e., Animal2, uav_car2_s, uav8, S0501, and uav0000074_01656_s).

to provide clearer visualizations, targets appearing with low
resolution have been suitably zoomed in and intercepted for
display purposes. In Fig. 5, it can be observed that our tracker
is the only one that successfully tracks the targets across all
the challenging examples. These examples present various
challenges, such as pose variations (i.e., in all sequences),
background clusters (e.g., in uav0000294_00000_s), scale
variations (e.g., in ChasingDrone, uav0000294_00000_s, and
S1201). Our method significantly outperforms the others and
provides more visually pleasing results in these cases. Specif-
ically, only RACF, ECO-HC, AutoTrack, ARCF-HC, and our
TATrack-DeiT succeed in tracking the target in wakeboard3
but TATrack-DeiT is more accurate; only TCTrack, HiFT,
and TATrack-DeiT succeed in tracking the target in Chas-
ingDrones; the target in car11 is successfully tracked by
P-SiamFC++ and TATrack-DeiT only but TATrack-DeiT is
more accurate; in the rest sequences, TATrack-DeiT is always
the most accurate in tracking each target. These results
demonstrate the superiority of the proposed method over
these competing trackers. In Fig. 6, it is evident that all
trackers eventually fail to maintain target tracking in these
cases. Specifically, the first sequence features similar targets,
making it difficult for the trackers to distinguish between
them. The second sequence experiences severe illumination
variations, challenging the trackers to maintain consistency

in different lighting conditions. The third sequence involves
fast motion and rapid viewpoint changes, testing the trackers’
ability to adapt to quick and unpredictable movements. The
fourth sequence deals with small objects and low resolution,
where the limited detail makes accurate tracking more chal-
lenging. Finally, the last sequence encounters severe occlusion,
requiring the trackers to predict the target’s position even
when it is partially or completely hidden from view. These
cases illustrate the complexities of UAV tracking and highlight
the limitations of both existing methods and our approach,
suggesting the need for enhanced feature robustness, advanced
motion, and appearance models, and better mechanisms for
handling occlusion and illumination changes.

C. Comparison With Deep Trackers

In order to further highlight the strengths of the proposed
method and showcase its superiority over other approaches
in the field, the proposed TATrack-DeiT and TATrack-DeiT-
D are also compared with 15 state-of-the-art deep trackers.
The precision (Prec.), success rate (Succ.), and GPU speed
of our TATrack-DeiT, TATrack-DeiT-D, and the competing
deep trackers are shown in Table II. As can be seen, our
proposed method, TATrack-DeiT, demonstrates superior per-
formance compared to all other methods on the VisDrone2018
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TABLE III

ABLATION STUDY OF WEIGHTING THE MI LOSS LMI IN TRAINING TATRACK-DEIT, WITH ρ RANGING FROM 10−1 TO 10−7 WITH A SCALE FACTOR OF
0.1. THE EVALUATION IS CONDUCTED ON FIVE UAV TRACKING DATASETS. RED, BLUE, AND GREEN INDICATE THE FIRST, SECOND,

AND THIRD PLACES

benchmark. Specifically, it surpasses the second-place tracker,
TransT, with improvements of 2.1% in precision and 1.7%
in success rate. And, our method achieves second place on
DTB70 in terms of both precision and success rate, with
a small gap of 0.1% precision to the first-place Tomp and
SeqTrack. These results show that our TATrack-DeiT is even
comparable to state-of-the-art deep trackers in precision and
success rates and underscore the effectiveness of our method
for UAV tracking tasks. More remarkable, our TATrack-DeiT
achieves the highest average GPU speed of 242.3 FPS, and
TATrack-DeiT-D achieves an impressive 320.7 FPS, signifi-
cantly outperforming all other methods. More specific, despite
the precisions of Tomp, TrSiam SimTrack, and KeepTrack
surpass our methods on DTB70, UAVDT, UAV123, and
UAV123@10 FPS, respectively, these methods fall behind
our methods in GPU speed apparently. Specifically, our
TATrack-DeiT and TATrack-DeiT-D are, respectively, 9 and
12 times faster than Tomp, 5 and 8 times faster than TrSiam,
2 and 3 times faster than SimTrack, and 10 and 15 times faster
than KeepTrack. This achievement underscores our method’s
ability to provide both high precision and speed, validating its
suitability for UAV tracking that prioritizes efficiency as well
as precision.

D. Ablation Study

In this section, an ablation study is performed to gain insight
into the performance contributions of different components or
characteristics of our proposed model.

1) Impact of Weighting the Loss for MI Maximization:
To see how the weight ρ of the loss LMI impacts the per-
formance, we train TATrack-DeiT with different ρ that goes
from 10−1 to 10−7 with a scale factor of 0.1 and evaluate
them on VisDrone2018 [24]. The Prec. and Succ. are shown
in Table III. Note that the baseline without target awareness
corresponding to ρ = 0 is also shown in the table for
comparison. As can be seen, the best Prec. (88.0%) and Succ.
(66.9%) are achieved at ρ = 10−6, while the second-ranked
and third-ranked performances are achieved at ρ = 10−3 and
ρ = 10−5, respectively. They apparently surpass the baseline
performance Prec. (82.3%) and Succ. (63.2%) at ρ = 0, with
the differences of 5.7% and 3.7%, respectively. Although Prec.
increases for all ρ > 0 with respect to the baseline, there
are some cases where Succ. slightly decreases, i.e., when
ρ = 10−1, 10−2, and 10−4. This suggests that the weight ρ

does significantly impact the tracking performance and too

large ρ may result in a negative effect. Only if appropriately
weighted, will the MI loss lead to better tracking performance.

2) Impact of Architecture of the Jensen–Shannon MI Esti-
mator: The neural network Tθ in the Jensen–Shannon MI
estimator is composed of three linear layers. Its input size
is fixed, dependent on the size of the input template and
its feature representation, and its output size is 1. Therefore,
the input and output size of Tθ is two hyperparameters. For
simplicity, we set these two hyperparameters equal and denote
them by l. To study how l impact the performance, we train
TATrack-DeiT with different l that goes from 128 to 2048 with
a scale factor of 2 and evaluate them on five UAV tracking
datasets, i.e., DTB70 [22], UAVDT [23], VisDrone2018 [24],
UAV123 [25], and UAV123@10 FPS [25]. The Prec. and Succ.
are shown in Table IV. As can be seen, the best average Prec.
and Succ. are achieved at l = 512, with the best average Prec.
and Succ. being 84.86% and 65.16%, respectively. Basically,
TATrack-DeiT achieves the best or the second-best Prec.
or Succ. when l is between 256 and 1024, suggesting that
l does significantly impact the tracking performance and only
if appropriately set, will result in better tracking performance.

3) Effect of Learning Target-Aware ViTs: To evaluate the
proposed idea of learning target-aware ViTs, the proposed
trackers are also trained without the loss designed for learning
target awareness and are evaluated on five UAV tracking
benchmarks. The results are shown in Table V. The FLOPs
and Params. (number of parameters) pertaining to inference are
also shown in the table to help understand the computational
complexity of the proposed trackers. As seen in the results, the
Prec. and Succ. of all these trackers exhibit varying degrees of
improvement when the proposed method for achieving target
awareness is integrated. On average, the Prec. of TATrack-ViT,
TATrack-XCiT, TATrack-DeiT, TATrack-PiT, and TATrack-
A-ViT increases by 2.5%, 2.2%, 2.7%, 4.1%, and 1.6%,
respectively, while their Succ. rises by 1.5%, 1.5%, 1.8%,
3.3%, and 1.3%, respectively. Although the enhancement of
TATrack-PiT appears most noticeable, with 4.1% in Prec. and
3.3% in Succ., the improvements of the rest trackers are also
significant when considering the following factors.

1) The mean growth in Prec. and Succ. for the CNN-based
trackers, as derived from Table I, over the past two years
is 2.4% and 1.4%, respectively.

2) The settings for learning occlusion-robustness and the
training pipeline remain consistent across all trackers,
without any customization.
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TABLE IV
ABLATION STUDY OF THE ARCHITECTURE OF THE JENSEN–SHANNON MI ESTIMATOR. l IS THE SUPERPARAMETER THAT SPECIFIES THE NETWORK

ARCHITECTURE. RED, BLUE, AND GREEN INDICATE THE FIRST, SECOND, AND THIRD PLACES

TABLE V
ABLATION STUDY ON EFFECT OF LEARNING TARGET-AWARE VITS. THE PROPOSED TRACKERS ARE TRAINED WITH AND WITHOUT THE LOSS

DESIGNED FOR LEARNING TARGET AWARENESS AND ARE EVALUATED ON FIVE UAV TRACKING BENCHMARKS

TABLE VI
EFFECT OF DIFFERENT KNOWLEDGE DISTILLATION LOSS FUNCTIONS WITH HIGHER ACCURACY BEING INDICATED IN BOLD

3) Our method can be easily integrated or adapted
into other tracking frameworks, without increasing the
inference time. As a final point, the consistent improve-
ment observed in five UAV benchmarks, except for
DTB70 [22], where TATrack-XCiT experiences a slight
decrease, after employing the proposed method for
learning target awareness, validates the effectiveness of
our approach.

4) Effect of MI Maximization-Based Knowledge Distilla-
tion: To demonstrate the superiority of the proposed MI
maximization-based knowledge distillation method, we use
the MSE loss to replace the proposed MI-based loss LMI
to conduct the proposed feature-based knowledge distilla-
tion and evaluate the two approaches on five UAV tracking
datasets. The experimental results are presented in Table VI.
It can be observed from the table that our method consis-
tently outperforms the approach using MSE loss across all
five datasets, with particularly significant improvements on
DTB70, UAVDT, and VisDrone2018. On average, employing
LMI leads to a 2.2% increase in Prec. and a 1.7% increase in
Succ. compared with using MSE loss. In addition, compared
with the teacher model, our method only incurs a slight
decrease of 1.1% in Prec. and 0.9% in Succ., while achieving a
notable speedup of 32%. These results highlight the advantage
of our proposed MI maximization-based knowledge distillation
method, which we attribute to the ability of MI-based loss
to provide a more comprehensive measure of the relation-
ship between features, allowing the student model to learn

a richer representation from the teacher model. In addition,
our MI-based loss is less sensitive to noise and outliers
compared with MSE, making it particularly effective in noisy
environments.

5) Application to Current Trackers: To demonstrate the
generality of the proposed method, we applied it to three
state-of-the-art trackers: GRM [89], HiT-Tiny [67], and
OSTrack-256 [3]. We conducted a comparison of tracking per-
formance with and without the integration of the target-aware
component against the baseline, maintaining a consistent ρ

across our tracking framework. The experimental results,
as shown in Table VII, reveal significant improvements for
all baseline methods when target awareness is incorporated.
As can be seen, apart from a marginal decrease of 0.1% in
GRM’s Prec. on DTB70, all three baseline methods demon-
strate performance enhancements on all five benchmarks
after the integration of the proposed component. Specifically,
GRM achieves a 3.0% improvement in Prec. and a 2.2%
improvement in Succ. on UAV123 [25]. HiT-Tiny exhibits
increases of 4.1% and 2.7% on VisDrone2018 [24], while
OSTrack-256 demonstrates improvements of 3.4% and 2.4%
on UAV123@10 FPS [25] in Prec. and Succ., respectively.
These experimental results effectively highlight the versatility
of the proposed method, which can be seamlessly integrated
into existing tracking frameworks, enhancing tracking accu-
racy without incurring additional computational overhead.

6) Comparison Based on Consistent Training Datasets:
As different DL-based trackers may be trained with different
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TABLE VII
PROPOSED TARGET-AWARE METHODOLOGY WAS APPLIED TO SOTA TRACKERS, SPECIFICALLY GRM, HIT-TINY, AND OSTRACK-256,

AND EVALUATED ON FIVE UAV TRACKING BENCHMARKS

TABLE VIII
ALL SIX DEEP LEARNING-BASED LIGHTWEIGHT SOTA TRACKERS WERE TESTED ON FIVE UAV TRACKING BENCHMARKS

USING THE SAME TRAINING DATASET AS OUR METHOD

Fig. 7. For each group, the top shows the original images, while the following two rows display the attention map generated by the algorithm in some video
frames. The middle row is from TATrack-DeiT-, and the bottom row is from TATrack-DeiT. Note that the suffix “-” is added to the model to indicate its lack
of target awareness implementation.

datasets, in order to provide a comparison based on consistent
training datasets, we trained all six state-of-the-art DL-based
methods with the same datasets as in our training settings
which are also adopted in many state-of-the-art trackers [3],
[79], [80]. The six DL-based methods for comparison are
SiamAPN [64], SiamAPN++ [65], HiFT [8], P-SiamFC++

[9], TCTrack [2], and F-SiamFC++ [10]. It is worth noting
that all training codes are obtained from official sources,
and modifications are limited to adapting the training set
while keeping other aspects consistent with the original
implementations. The experimental results are presented in
Table VIII. As can be seen, even under the consistent training
setting of identical datasets, our approach also consistently
outperforms others. It excels in all five benchmarks, with
several metrics demonstrating a substantial lead over the
second-best approach. For instance, on VisDrone2018 [24],
our TATrack-DeiT achieves a precision and success rate that is
above 7.0% higher than the second-best tracker F-SiamFC++.
On UAV123@10 FPS [25], our method surpasses the second-
best, TCTrack, by an astonishing 9.3% in precision and
7.1% in success rate. On average, our method outperforms
the second-best by 6.8% in precision and 6.7% in success
rate. This significant performance advantage underscores the

effectiveness of our approach. Notably, we observed that after
training with the same dataset as ours, most of the six SOTA
methods experienced a reduction in performance compared
with their original performances. We speculate that this differ-
ence could be attributed to the fact that the hyperparameters
in their methods were specifically tuned for the datasets they
originally used and may not be optimal for the dataset we
employed.

7) Qualitative Results: Figs. 7 and 8 visualize the attention
produced by TATrack with and without target awareness
implemented. For convenience, a suffix “-” is added to the
models to indicate they do not have a target awareness imple-
mentation. For instance, TATrack-ViT- means TATrack-ViT
without target awareness. Specifically, Fig. 8 aims to visualize
the attention generated by TATrack with and without target
awareness to illustrate the effectiveness of our approach in pre-
serving and highlighting target information in learning efficient
ViTs for UAV tracking, in which all examples are templates of
the targets provided in the initial frame, which are less suscep-
tible to occlusion to ensure clear identification of the target for
tracking purposes. While Fig. 7 showcases attention maps for
TATrack-DeiT and TATrack-DeiT on example sequences under
more complex scenarios for comparison, where challenges
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Fig. 8. For each group, we show (left) template, (top) attention, from left to right, generated, respectively, by TATrack-ViT-, TATrack-XCiT-, TATrack-DeiT-,
TATrack-PiT-, and TATrack-A-ViT-, and (bottom) attention generated by TATrack-ViT, TATrack-XCiT, TATrack-DeiT, TATrack-PiT, and TATrack-A-ViT,
respectively. Note that a suffix “-” is added to the model to indicate it does not have a target awareness implementation.

Fig. 9. Real-world tests. The tracking target has been marked with a red box in the real data recorded on the UAV platform.

such as background clutter, low light, aspect ratio changes, and
occlusions are present. trackers equipped with target awareness
yield more precise attention maps, particularly in complex sce-
narios. For instance, in scenes with background clutter and low
light conditions, such as person1_s from the UAV123 dataset,
TATrack-DeiT demonstrates sharper attention than TATrack-
DeiT- even in low-contrast environments, clearly delineating
the person’s silhouette. Similarly, in scenes featuring aspect
ratio variations and occlusions, like truck1 from the UAV123
dataset, TATrack-DeiT also exhibits more accurate attention.
From Fig. 8, it can be seen that, without target awareness,
generated attention either highlights only parts of a target
(e.g., TATrack-DeiT-, TATrack-PiT- and TATrack-A-ViT- on
ManRunning1 of DTB70 [22], TATrack-ViT-, TATrack-XCiT-,
and TATrack-A-ViT- on boat2 of UAV123 [25]), or has a low
contrast between the target and background (e.g., TATrack-
XCiT- and TATrack-DeiT- on ManRunning1, TATrack-DeiT-
and TATrack-PiT- on boat2). Whereas, when enhanced by
target awareness, all the TATrack-* models generate visually
more favorable attentions. For example, TATrack-ViT is able
to generate attention that highlights most parts of the person
and the boat, and the attention on the boat generated by
TATrack-PiT has a higher contrast than by TATrack-PiT-.
These qualitative results support the effectiveness of our

method in maintaining and highlighting the target information
in learning efficient ViTs for UAV tracking.

E. Real-World Tests

In this section, to verify the practicality of the method under
real-world conditions, we installed an embedded onboard pro-
cessor, the NVIDIA Jetson AGX, on a typical UAV platform.
In real-world UAV testing, the utilization rates of GPU and
CPU are 58.2% and 19.7%, respectively. The main challenge
in the testing is shown in Fig. 9. The first line shows
targets under strong sunlight, the second line of long-range
small targets, and the third line targets with rapidly changing
perspectives. Our tracker TATrack-DeiT succeeds in tracking
all these targets. Moreover, our tracker remains at a speed of
over 35.6 FPS during the tests without using TensorRT. Main-
taining satisfactory tracking robustness in various challenging
scenarios, real-world testing of TATrack-DeiT on embedded
systems directly verifies excellent performance and efficiency
in various UAV-specific challenges.

VI. CONCLUSION

In this study, we are the first to investigate the use
of efficient ViTs within a unified template–search coupling
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framework for real-time UAV tracking. We reveal and address
an issue that target information is prone to diminish when
performing template–search coupling with ViTs. Our method
aims to learn target-aware ViTs by maximizing the MI between
the template image and its feature representation produced by
the ViT, which can be easily incorporated into other tracking
frameworks without increasing inference time. Exhaustive
experiments confirm the effectiveness of our method, demon-
strating that our TATrack-DeiT establishes a new record in
performance across five challenging UAV datasets. Building
upon this, after applying our proposed MI maximization-based
knowledge distillation, our TATrack-DeiT-D strikes a bet-
ter trade-off between accuracy and efficiency, also showing
state-of-the-art performance on the aforementioned five bench-
marks, with a significant improvement in speed. We anticipate
that our work will inspire further advancements in creating
efficient ViT-based trackers for real-time UAV tracking.

Although we employed established ViTs for constructing
our trackers in this study, we recognize that the efficiency of
feature learning and template–search coupling is closely tied
to these ViTs. Consequently, our future research endeavors
will concentrate on exploring more lightweight and efficient
ViTs. On the other hand, despite the fact that no additional
inference time is required in achieving target-aware ViTs
with the proposed method, MI estimation in our method
necessitates a significant time cost for learning target-aware
ViTs. In the future, we will investigate more efficient estima-
tors for MI maximization in order to reduce training time.
In addition, our method may fail due to the existence of
similar targets, substantial variations in illumination, rapid and
erratic movements, low resolution, and significant occlusion.
This highlights the need for improved feature robustness,
more advanced motion and appearance models, and better
mechanisms for handling occlusion and illumination changes.
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