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Introduction

Our FreeNet learns fine-grained APE with free full annotation labels.
~- DatasetA ~, :DatasetB -, - Dataset C-—~ Fine-grained Animal Pose

New problem
setting in APE

v

Challenges
» Lack standardized joint definitions across APE datasets

» Shared joints in different animal body parts exhibit different
learning difficulties

» Unannotated joints aggravate the skewed joint distribution in the
combined training data
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Motivation

» Body part-aware learning balances the learning of shared
joints among different datasets

» The circuit feedback mechanism improves the base
network’s predictions on unannotated joints

Contributions

» Address the non-standardized annotation problem, a new and
significant challenge In fine-grained APE

» Propose FreeNet method to effectively utilize annotation data,
which can predict denser joints with free full annotation labels

» Extensive experiments on non-standard datasets demonstrate the
superiority of our method for fine-grained APE

Towards Labeling-free Fine-grained Animal Pose Estimation
Dan Zeng, Yu Zhu, Shuiwang Li, Qiun Zhao, Qiaomu Shen, Bo Tang

Project website: https://github.com/yzrs/FreeNet.
Method: FreeNet
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Body part-aware Feedback

learning learning
| I
Pseudo-joints in [J Pseudo-joints
+ | in Sfeedback
Adaptation Network I

Pseudo

: R o ",{‘:5_, i . ™ -+ >
— Data flow — —p Gradient flow /

— Label generation

» Body part-aware learning Enhances the adaptation network’s tolerance

A to unannotated joints.
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» Feedback learning
* Loss design
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* Pseudo-joints selection criteria
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Use the confidence score rankings from
both networks to ensure unannotated
joints are further improved.

® Unannotated joints
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O Shared joints
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Experiments
» Comparison with SOTA methods on nonstandard datasets

Settings  Full Annot. Methods mAP] PCK@0.05T
5 ips v ScarceNet  53.3 65.2 Scarce datasets with
25 ips v ScarceNet  68.1 78.2 full annotations
X ScarceNet 55.04 66.26
3 synthetic X UDA 50.8 64.06
datasets X FixMatch  43.8 57.56 Scarce datasets with
from 25 ips X MPL 50.7 63.51 zero full annotations
X Ours 57.9 68.31

» Effect of FreeNet design
Model 1 Model 2 Ours Ground Truth

Results on combined real datasets,
l.e., 10% AP-10k, and AnimalPose

Models Loss mAPT PCK@0.057
-Es Lu -Ef
1 v X X 52.2 67.6
2 /X 562 70.63
Ours v v v 57.26 71.36

» FreeNet can generate denser joints in real-world applications
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