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Abstract
Addressing the core challenges of achieving both high efficiency and precision in UAV tracking is crucial due to limitations in 
computing resources, battery capacity, and maximum load capacity on UAVs. Discriminative correlation filter (DCF)-based 
trackers excel in efficiency on a single CPU but lag in precision. In contrast, many lightweight deep learning (DL)-based track-
ers based on model compression strike a better balance between efficiency and precision. However, higher compression rates 
can hinder performance by diminishing discriminative representations. Given these challenges, our paper aims to enhance 
feature representations’ discriminative abilities through an innovative feature-learning approach. We specifically emphasize 
leveraging contrasting instances to achieve more distinct representations for effective UAV tracking. Our method eliminates 
the need for manual annotations and facilitates the creation and deployment of lightweight models. As far as our knowledge 
goes, we are the pioneers in exploring the possibilities of contrastive learning in UAV tracking applications. Through exten-
sive experimentation across four UAV benchmarks, namely, UAVDT, DTB70, UAV123@10fps and VisDrone2018, We have 
shown that our DRCI (discriminative representation with contrastive instances) tracker outperforms current state-of-the-art 
UAV tracking methods, underscoring its potential to effectively tackle the persistent challenges in this field.

Keywords UAV tracking · Contrastive instances · Discriminative representation · Contrastive learning

1 Introduction

UAV tracking as a subset of object tracking, draws consid-
erable attention because of its potential in various applica-
tions, such as navigation, agriculture, transportation, disaster 
response, and public safety [1–6]. UAV tracking focuses on 
assessing and predicting the location and size of arbitrary 
targets in continuous aerial imagery, which is a critical 
capability for tasks ranging from automated monitoring of 
crop health in precision agriculture to effective coordina-
tion during disaster management and surveillance in public 
safety operations. Despite being a subset of object tracking, 
UAV tracking presents a variety of unique challenges that 

impede the achievement of high precision and efficiency. 
UAV tracking faces challenges such as motion blur, extreme 
viewing angles, severe occlusion, and changing scales due to 
high-speed UAV movement. These factors, especially when 
combined, significantly degrade precision. The finite com-
putational resources aboard UAVs require streamlined algo-
rithms for real-time operation, demanding exceptional effi-
ciency in design and execution. Moreover, stringent power 
constraints and limited battery capacity impose strict limita-
tions on the duration of tracking operations. The operational 
window becomes dictated by the available power, posing a 
continual challenge for sustained tracking tasks [3, 4, 7].

Given these unique obstacles and constraints, the need 
for innovative tracking techniques increases dramatically. 
New approaches should not only mitigate these difficulties 
but should also be able to adapt swiftly to the ever-changing 
scenarios intrinsic to UAV operations. This demands ongo-
ing innovation in the design of UAV tracking methodolo-
gies and technologies. The discriminative correlation filter 
(DCF) approach has notably excelled in efficiency, reigning 
supreme on a single CPU. However, its prowess in speed 
is countered by a relative lag in accuracy compared to the 
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cutting-edge deep learning (DL)-based trackers [1, 8–13]. 
The DL-based trackers are acclaimed for their unparalleled 
accuracy. Yet, their strength in accuracy often comes at 
the cost of efficiency due to their reliance on intricate and 
resource-intensive architectures. To narrow this gap and 
meet the growing demand for both precision and efficiency, 
a recent trend has emerged—the development of lightweight 
DL-based trackers [3, 4, 14, 15]. This evolution represents 
a concerted effort within the field, aiming to combine the 
precision of DL-based approaches with streamlined architec-
tures that prioritize computational efficiency. The introduc-
tion of lightweight DL-based trackers represents a signifi-
cant turning point in the methodology of UAV tracking. It 
represents a shift towards reconciling the balance between 
accuracy and efficiency, striving to harness the advantages 
of DL-based precision while mitigating the computational 
burdens inherent in complex architectures. This endeavor is 
consistent with the primary objective of enhancing tracking 
performance within the resource-constrained environment of 
UAV tracking. These approaches primarily leverage model 
compression methods, like filter pruning, to enhance effi-
ciency while upholding a strong level of precision. Despite 
the simplicity of filter pruning methods utilized in works like 
Fisher pruning [4] and rank-based filter pruning [3]. How-
ever, the attained results for tracking precision and efficiency 
fall short of expectations and remain unsatisfactory. The pri-
mary drawback of these approaches stems from the utiliza-
tion of high compression rates, which often result in subpar 
discriminative representations [16, 17]. In light of this, our 
paper explores a new feature-learning approach designed 
to address the challenge of low performance in UAV track-
ing. The primary objective is to augment the discriminative 
capabilities of feature representations.

Contrastive learning functions as a discriminative and 
representation learning technique, aiming to construct an 
embedding space where similar sample sets (referred to 
as positive pairs) are closely grouped, while dissimilar 
ones (referred to as negative pairs) are positioned farther 
apart [18–20]. This approach has been productively uti-
lized across a spectrum of vision tasks, such as text-to-
image generation [21], image-to-image translation [22], 
image classification [23], as well as natural language 
comprehension [24]. Of note is the successful application 
of contrastive learning to single object tracking [25, 26] 
and multiple object tracking [27, 28]. Nonetheless, these 
applications typically necessitate additional annotations 
for positive pairs collection, which wastes ample amount 
of time in addition to significantly increasing computing 
complexity [26]. Alternatively, contrastive learning in 
these approaches is intricately linked with complex and 
resource-intensive tracking frameworks [25, 27, 28], this 
scenario makes the transfer of the learning mechanism 
to UAV tracking unfeasible. Building on these insights, 

this paper aims to integrate contrastive learning into UAV 
tracking by adopting an approach that is both efficient and 
streamlined. This method not only eradicates the necessity 
for manual annotations but also enables the development 
and deployment of a lightweight model.

In this work, we utilize intra- and inter-video target tem-
plates as contrastive instances to enhance discriminative 
representation learning for UAV tracking. Unlike tradi-
tional contrastive learning methods [23] that generate posi-
tive pairs through image augmentation, we generate positive 
pairs from video data. To address challenges in selecting 
positive samples, such as occluded targets, we empirically 
choose two frames randomly from the video to create posi-
tive sample pairs, as we have observed that the majority 
of these pairs demonstrate satisfactory quality. As a result, 
the proposed tracker adopts the discriminative representa-
tions with contrastive instances (DRCI) approach, achieving 
unparalleled efficiency and precision compared to existing 
CPU-based and lightweight DL-based trackers in the field of 
UAV tracking. The acquired discriminative representations 
serve as a focal point in empowering the model to discern 
and prioritize crucial features during tracking. By empha-
sizing essential characteristics, the model becomes adept 
at filtering out irrelevant variations, thereby reducing the 
impact of factors like scale, pose, or illumination that may 
otherwise hinder accurate tracking. This intrinsic capacity 
to concentrate on pertinent information not only fortifies the 
model’s resilience but also ensures its adaptability across 
diverse conditions. In summary, the proposed discriminative 
representation learning with contrastive learning equips our 
UAV tracking model with the ability to discern and concen-
trate on key features, paving the way for robust and effec-
tive tracking across a spectrum of challenging scenarios. 
Importantly, our DRCI model does not introduce additional 
computational load during the inference phase, ensuring 
consistent performance. To further improve efficiency, we 
introduced Nvidia TensorRT to quantify the model on the 
original basis. And have shown the specific performance in 
Fig. 1. The main contributions of this paper are summarized 
as follows:

• We lead the vanguard in exploring contrastive learning 
for UAV tracking, introducing a pioneering feature-learn-
ing perspective that yields lightweight DL-based track-
ers.

• We introduce the DRCI tracker, which acquires discrimi-
native representations through contrastive instances, suc-
cessfully striking a notable equilibrium between tracking 
efficiency and precision.

• Our approach is substantiated through application to four 
prominent public UAV benchmarks, where experimental 
findings underscore the DRCI tracker’s achievement of 
state-of-the-art performance.
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2  Related work

In this paper, we have enhanced and expanded upon our 
prior research [30] with a thorough examination of how to 
utilize contrastive instances to learn more discriminative 
representations for real-time UAV tracking. We have incor-
porated model quantification methodologies to augment the 
efficacy of the previous version, thereby achieving a superior 
balance between the velocity of tracking and its accuracy. 
This progressive innovation has significantly notched up our 
real-time tracking performance, clocking an extraordinary 
average of over 85.4 FPS on a single CPU. Surprisingly, the 
GPU speed has reached 558.2 FPS. To avoid confusion, the 
original version is indicated as DRCI(v1), and the upgraded, 
more advanced version is denoted as DRCI(v2).

2.1  UAV tracking methods

In the expansive realm of contemporary visual tracking 
techniques, tracker systems broadly classify into two prin-
cipal categories: DCF-based trackers and DL-based trackers. 
DCF-based trackers have gained significant traction in UAV 
tracking due to their noteworthy efficiency. These trackers 
find their roots in the genesis of the minimum output sum 
of squared error (MOSSE) filter, marking a pivotal starting 
point in their evolution. Over time, these trackers have expe-
rienced substantial advancements through numerous itera-
tions and diverse variants [7, 31], solidifying their status as 
cutting-edge methodologies in the domain of UAV tracking. 
[1, 10, 32–34]. Although DCF-based trackers offer notable 
advantages, such as increased efficiency, they struggle to 
maintain robustness, particularly in challenging conditions. 

This limitation primarily originates from the suboptimal rep-
resentation capability of handcrafted features. These manu-
ally designed features often struggle to consistently capture 
the nuances inherent in complex tracking scenarios, leading 
to a shortfall in their adaptability and performance reliability 
across varied and challenging visual contexts.

In recent years, the realm of visual tracking has experi-
enced substantial advancements propelled by deep learning 
techniques, notably elevating tracking precision and robust-
ness. This progress is particularly noticeable in the crea-
tion of specialized DL-based trackers for UAV applications, 
which demonstrate significant improvements. For instance, 
Cao et al. [2] pioneered a hierarchical feature transformer, 
facilitating the fusion of spatial information and semantic 
cues to enrich tracking capabilities. Similarly, Fu et al. [35] 
introduced a two-stage Siamese network-based approach 
adept at generating and refining high-quality anchor pro-
posals, further bolstering tracking accuracy. In addition, 
Cao et al. [36] innovatively presented a framework that 
maximizes temporal context utilization through an adap-
tive temporal transformer, specifically designed for aerial 
tracking scenarios. These innovations collectively represent 
a significant stride in harnessing deep learning for enhancing 
UAV-based visual tracking methodologies. Despite signifi-
cant strides, the efficiency of DL-based trackers still falls 
short compared to many DCF-based counterparts. Recent 
research aimed to augment the efficiency of DL-based UAV 
trackers by concentrating on leveraging model compres-
sion techniques, as highlighted in studies, such as [3, 4]. 
Nevertheless, despite the simplicity of these approaches, 
attaining satisfactory tracking precision at higher com-
pression rates remains a challenging endeavor. Moreover, 

Fig. 1  Using UAVDT [29] data 
set as the testing benchmark, 
compared with trackers based 
on DCF and DL, our DRCI 
tracker achieves the best balance 
between precision and efficiency 
with only a single CPU and 
GPU in the UAV benchmarks. 
DRCI(v1) is an improvement of 
P-SiamFC++ [3] and DRCI(v2) 
is just a TensorRT conversion of 
DRCI(v1)
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despite the emergence of Aba-ViTrack [37], leveraging 
vision transformer models (ViTs) and dynamically discard-
ing tokens using learned halting probabilities, its efficiency 
in UAV tracking remains notably inferior when compared to 
DL-based trackers. This disparity underscores the ongoing 
challenges in optimizing DL-based methodologies for UAV-
specific tracking tasks. In contrast, our paper diverges from 
conventional methods by presenting a distinctive approach 
to tackle the issue of subpar performance in UAV tracking. 
We delve into the realm of contrastive learning, proposing 
it as a novel technique for feature learning. Our primary aim 
is to improve the discriminative potential of feature repre-
sentations, with the goal of significantly boosting tracking 
performance. Leveraging the prowess of contrastive learn-
ing, we aim to bolster feature representation, foreseeing a 
notable boost in tracking capabilities through this innovative 
approach.

2.2  Contrastive learning

Absolutely, contrastive learning functions by discerning 
similarities and discrepancies among samples, operating 
within the representation space. Its core objective revolves 
around consolidating similar samples closer together while 
concurrently pushing dissimilar ones apart, effectively 
enhancing the representation’s discriminative capabilities. 
Owing to its impressive performance in self-supervised 
learning paradigms, contrastive learning has garnered sig-
nificant attention within the field, emerging as a central hub 
for innovative advancements [21–24]. Contrastive learning 
has demonstrated its versatility across various fields, includ-
ing multiple object tracking [27, 28] and single object track-
ing [25, 26], albeit relatively recently. For example, Pang 
et al. [27] introduced the concept of quasi-dense similarity 
learning, which involves densely sampling region proposals 
from image pairs. This innovative approach enables contras-
tive learning to capitalize on the most informative regions, 
thereby enhancing the effectiveness of the learning process. 
Similarly, Yu et al. [28] devised a trajectory-level contras-
tive loss strategy, leveraging inter-frame information within 
target trajectories. This strategy capitalizes on temporal rela-
tionships to enhance representations, leading to improved 
tracking precision and increased robustness. In another 
vein, Wu et al. [25] presented a progressive unsupervised 
learning (PUL) framework tailored explicitly to distinguish 
objects from backgrounds. This framework adopts a pro-
gressive learning strategy to refine representations, allowing 
for more nuanced differentiation between objects and their 
surroundings, ultimately enhancing tracking accuracy. Simi-
larly, Pi et al. [26] employed contrastive learning to construct 
instance-aware and category-aware modules. By leveraging 
different semantic levels, this innovative approach facili-
tates the creation of robust feature embeddings, enhancing 

the system’s ability to discern both specific instances and 
broader categories within tracking contexts.

Indeed, a common challenge with these approaches 
involves the need for extra annotations to gather positive 
pairs, a process that can be both costly and time-consuming 
[26]. Moreover, the integration of contrastive learning within 
these methodologies tends to be intricately connected with 
complex and resource-demanding tracking frameworks [25, 
27, 28]. This interdependency poses a significant hurdle in 
directly applying these learning mechanisms to the realm 
of UAV tracking, where resource constraints and real-time 
processing requirements present considerable challenges. In 
our paper, our primary goal is to streamline the integration 
of contrastive learning to yield more discriminative feature 
representations. Our approach targets the augmentation of 
both accuracy and efficiency within lightweight DL-based 
trackers, specifically tailored for UAV tracking. Importantly, 
we aim to achieve these enhancements without entailing the 
complexities linked to extensive annotations or the resource-
intensive nature of existing frameworks. This streamlined 
approach seeks to render contrastive learning more accessi-
ble and practical within the domain of UAV tracking, ensur-
ing a more efficient and effective tracking system.

3  Methodology

3.1  Overview

In Fig. 2, the proposed discriminative representation using 
contrastive instances (DRCI) architecture is composed of 
distinct components: a backbone, a neck, a head network, 
and a discriminative representation learning (DRL) module. 
The backbone network, represented as �(⋅) , functions as a 
Siamese network shared between the template and search 
branches. It processes the template image Z and the search 
image X as inputs, respectively. The neck section integrates 
four convolutional layers designed to manipulate feature 
sizes. Following the neck, the head comprises two dense 
branches, succeeded by three convolutional layers. These 
layers produce outputs for classification, quality assess-
ment, and regression tasks. The backbone features from both 
branches undergo size adjustments within the neck before 
being merged through cross-correlation. The resulting cou-
pled features are then fed into the classification and regres-
sion heads for further processing. The coupling of features 
is formulated as follows:

the cross-correlation operation utilized in the architecture 
is symbolized by ⋆ , and E2 represents the encoder respon-
sible for identity-linked feature embedding. Within the 

(1)
fl(Z,X) = E2(𝜓

z

l
(𝜙(Z))) ⋆ E2(𝜓

x
l
(𝜙(X))), l ∈ {cls, reg},
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framework, specific layers tailored for classification and 
regression tasks are denoted as �x

cls
(⋅) and �x

reg
(⋅) , respec-

tively, sharing identical output sizes. Correspondingly, 
another set of task-specific layers, indicated as � z

cls
(⋅) and 

� z
reg
(⋅) , serve analogous roles. Throughout the training 

phase, a DRL module is integrated to bolster the discrimi-
native potential of feature representations specifically tai-
lored for UAV tracking. However, during the inference 
stage, the DRL module is omitted, thereby eliminating any 
additional computational overhead in the implementation 
of our DRCI. We would like to note that in this work we 
employ blockwise pruning ratios rather than layerwise ratios 
as used in P-SiamFC++ [3]. Our approach simplifies the 
pruning process and the search for optimal or sub-optimal 
pruning ratios, especially considering that determining 
layerwise pruning ratios in P-SiamFC++ is a tedious and 
time-consuming task. In addition, we also use quantization 
techniques to improve efficiency, which is not explored by 
P-SiamFC++.

3.2  Discriminative representation learning (DRL)

The discriminative representation learning (DRL) module 
in our UAV tracking model employs a contrastive learning 
framework, leveraging positive and negative instance pairs 
during training, which encourages the model to pull together 
representations of similar instances (positives) while pushing 
apart those of dissimilar instances (negatives). The learned 
discriminative representations with DRL enable the model 
to concentrate on essential features, reducing the influence 
of irrelevant variations during tracking. This enhances the 
model’s robustness against changes like scale, pose, or illu-
mination, ensuring effective tracking in diverse conditions. 

The DRL module integrates a projection head, denoted as 
Proj(⋅) , to transform the backbone features into an embedding 
space. This process aims to effectively assess similarity using 
a relatively straightforward distance function. For simplicity, 
we adopt a projection head instantiation consisting of a fully 
connected layer followed by a ReLU activation, akin to the 
design in SimCLR [23]. While a more sophisticated design 
for the projection head could potentially lead to performance 
enhancements, exploring such improvements is a direction 
we leave for future research endeavors. In obtaining instance 
samples for contrastive learning, we initially create a minibatch 
comprising N frame pairs extracted from N distinct sequences. 
From these pairs, we extract target templates, resulting in N 
positive pairs and ( C2

N
− N ) negative contrastive pairs. These 

contrastive template samples are represented as {Zi}
2N
i=1

 . Here, 
let I ≡ {1, ..., 2N} , and j(i) denotes the index of the other sam-
ple from the same target, forming a positive pair indicated by 
Zi ↔ Zj(i).

For our discriminative representation learning, we adopt the 
supervised contrastive loss proposed in [38]. Please note that 
in SimCLR [23], true positive sample pairs are not available, 
a characteristic referred to as self-supervised contrastive learn-
ing in [38]. However, when positive sample pairs are available, 
it is referred to as supervised contrastive learning in the same 
work, regardless of whether the negative samples are true or 
pseudo. The loss takes the following form:

given zi = Proj(�(Zi)) , where ⋅ denotes the inner product 
and � ∈ ℝ

+ represents a scalar temperature parameter. In 
this context, the function A(i) = I ⧵ {i} defines the set of 

(2)LDRL =
�

i∈I

1

�P(i)�
�

p∈P(i)

log
exp(zi ⋅ zp∕�)∑

a∈A(i) exp(zi ⋅ za∕�)
,

Fig. 2  In this illustration of DRCI, � ⋅

cls
 and � ⋅

reg
 represent task-spe-

cific convolutional layers dedicated to classification and regression 
tasks, respectively. The template Z functions as an anchor within our 
contrastive learning setup. In addition, we utilize Z+ and Z− as posi-

tive and negative samples, respectively, in our contrastive learning 
framework. These elements collectively form the basis of our DRCI 
method, leveraging contrastive learning to refine feature representa-
tions for improved classification and regression performance
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indices excluding i. In addition, P(i) = {p ∈ A(i) ∶ Zp ↔ Zi} 
denotes the indices of all positive samples in the minibatch 
for i, excluding itself. The notation |P(i)| signifies the car-
dinality of P(i). The primary objective of the DRL loss is 
twofold: first, to strengthen the similarity between feature 
representations of targets within the same sequence and sec-
ond, to reduce the similarity between those originating from 
different sequences. This serves as the guiding principle 
behind optimizing the contrastive learning process within 
the DRL framework.

3.3  Classification, regression and quality 
assessment losses

The classification branch is tasked with predicting the 
category at each location, while the regression branch 
computes the target bounding box for that specific loca-
tion. The outputs from these branches are represented as 
O

cls
h×w×2

 and Oreg

h×w×4
 , where w and h denote the width and 

height, respectively. In detail, Ocls
h×w×2

(i, j, ∶) signifies a 2D 
vector portraying the foreground and background scores 
at the position (i, j). On the other hand, Oreg

h×w×4
(i, j, ∶) rep-

resents a 4D vector illustrating the distances from the cor-
responding position to the four sides of the bounding box. 
Simultaneously, the quality assessment branch functions 
in parallel with the classification branch and generates an 
output designated as Oqs

h×w×1
 . This output serves to evalu-

ate the quality of classification, subsequently impacting 
the reweighting of the classification score. Following the 
approach in P-SiamFC++ [3], the losses for learning these 
tasks are as follows:

The comprehensive loss function for training our DRCI 
combines three primary components: the focal loss ( Lcls ), 
the IoU loss ( Lreg ), and the binary cross-entropy loss ( Lqs ). 
These components correspond to the tasks of classification, 
regression, and quality assessment, respectively. In these 
expressions, the symbol z denotes a coordinate on a feature 
map, pz represents a prediction, and p∗

z
 signifies the corre-

sponding target label. The function I{⋅} serves as the indica-
tor function, aiding in calculations, while Npos =

∑
z I{p∗z>0}

 
signifies the count of positive samples. The weight param-
eters �1 and �2 are introduced to balance these individual 
losses within the overall framework. It is important to note 
that in the classification task, p∗

z
 is assigned the value of 1 if 

z is identified as a positive sample and 0 otherwise, delineat-
ing the positive and negative samples for this specific task.

(3)
LCRQ =

1

Npos

∑

z

(Lcls(pz, p
∗
z
) + 𝜆1I{p∗

z
>0}Lreg(tz, t

∗
z
)

+ 𝜆2I{p∗
z
>0}Lqs(qz, q

∗
z
))

In summary, the overall loss for training our DRCI can 
be expressed as

where � is a constant coefficient to balance LCRQ and LDRL . 
We emphasize that the rationale for combining LCRQ and 
LDRL stems from the complementary nature of these loss 
functions and their potential to enhance the overall perfor-
mance and robustness of the model. This approach not only 
simplifies the training process but also encourages the model 
to learn more robust and generalized representations that 
can improve performance across various tracking scenarios.

4  Experiments

In this section, we present a thorough evaluation of our pro-
posed DRCI tracker, assessing both DRCI (v1) and DRCI 
(v2) for their superior performance and robustness. Our 
evaluation encompasses four widely acknowledged bench-
marks for aerial tracking: UAVDT [29], DTB70 [44], Vis-
Drone2018 [45] and UAV123@10fps [46]. These bench-
marks hold significant recognition within the field and are 
extensively utilized for evaluating UAV tracker performance. 
Code will be available on: https:// github. com/P- SiamF Cpp/ 
DRCI.

4.1  Evaluation data set

UAVDT [29], showcases a diverse array of complex sce-
narios captured by drones. Its primary focus lies in vehicle 
tracking across different weather conditions, flight altitudes, 
and camera perspectives. This data set serves as a robust 
evaluation platform for tracking algorithms in real-world 
UAV scenarios. DTB70 [44], encompasses a collection 
of 70 sequences captured by drones. This data set encom-
passes both short-term and long-term aerial targets and is 
characterized by chaotic scenes involving objects of vary-
ing sizes. DTB70 is specifically curated to challenge track-
ing algorithms in diverse and challenging UAV scenarios, 
providing a comprehensive evaluation environment. Vis-
Drone2018 [45], stands out as a substantial and expansive 
data set crafted for drone-based vision applications. This 
data set offers a wide spectrum of scene and object catego-
ries, comprising high-resolution images, videos, annota-
tions, and metadata. It serves as a rich resource for evaluat-
ing tracking algorithms within the domain of UAV vision, 
presenting diverse scenarios and extensive annotations for 
comprehensive assessment. UAV123@10fps [46], this data 
set is specifically created by subsampling UAV123 the origi-
nal 30FPS (frames per second) data set to a lower capture 

(4)L = LCRQ + �LDRL,

https://github.com/P-SiamFCpp/DRCI
https://github.com/P-SiamFCpp/DRCI
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rate of 10FPS. The primary aim of UAV123@10fps is to 
investigate and analyze the impact of varying camera capture 
rates on the performance of tracking algorithms. This data 
set provides valuable insights into how frame rate alterations 
affect the efficacy of UAV tracking method.

4.2  Experimental setup

The evaluation experiments were conducted on a system run-
ning Ubuntu 18.04, equipped with an NVIDIA TitanX GPU, 
an i9-10850K processor (3.6GHz), and 16GB RAM. The 
system utilized Nvidia-Driver-470 and CUDA version 10.1. 
It should be noted that variations in device configurations 
might yield slight differences in experimental results. Both 
versions of the DRCI tracker, namely, DRCI (v1) and DRCI 
(v2), were pruned using blockwise ratios: 0.7 for the back-
bone and 0.5 for the neck and 0.3 for the head, as detailed in 
[5]. The remaining architecture components follow the struc-
ture of F-SiamFC++. The temperature parameter ( � ) was 
set to 0.5, and the default setting for � was 0.1. In addition, 
other parameters crucial for training and inference, such as 
�1 and �2 , were adopted from the P-SiamFC++ framework 
for consistency and comparability in the evaluation process. 
We use the GOT-10k [47] training data set with a batch size 
of 32 and 8 workers. Initially, a 5-epoch warm-up phase 
linearly increases the learning rate from 10−7 to 2 × 10−3 . 
Subsequently, a cosine annealing learning rate schedule is 
adopted for the remaining 15 epochs. Each epoch involves 
processing 600k image pairs. SGD optimization with a 
momentum of 0.9 is employed throughout. The backbone 
of DRCI (v2) is accelerated with Nvidia TensorRT, quan-
tifying it from float 32 to float 16 bit for enhancement. The 
purpose is to improve the speed of CPU and GPU through 
quantification. Specifically, in DRCI (v2), it is necessary to 

perform quantitative acceleration processing on the network 
backbone module and it is necessary to convert the trained 
model into TensorRT format before acceleration, then use 
the TensorRT inference engine to run this model, while oth-
ers are the same as in DRCI (v1) version.

4.3  Comparison with CPU‑based trackers

Eight state-of-the-art (SOTA) trackers based on hand-crafted 
features for comparison are: RACF [7], AutoTrack [1], 
BACF [42], ARCF-HC [10], STRCF [43], ECO-HC [41], 
fDSST [40], KCF [39]. Figure 3 visually represents the pre-
cision and success rate achieved across four key UAV bench-
mark tests, specifically UAV123@10fps [46], DTB70 [44], 
UAVDT [29], and VisDrone2018 [45], arranged in sequence 
from left to right. Similarly, Fig. 4 showcases the evalua-
tion outcomes related to partial attributes observed in the 
corresponding UAV benchmark tests. Furthermore, Table 1 
provides a comprehensive overview, presenting the average 
performance metrics, including precision (PRC) and frames 
per second (FPS) attained on a single CPU.

Overall performance evaluation: The performance 
comparison of DRCI against competing trackers across the 
four UAV benchmarks is presented in Fig. 3. Notably, both 
DRCI (v1) and DRCI (v2) exhibit superior performance 
over all other trackers across most benchmarks, with the 
exception being VisDrone2018. Particularly, concerning 
UAV123@10fps, DTB70, and UAVDT, DRCI (v1) show-
cases significant superiority over the 2nd ranked tracker 
RACF in terms of precision and success rates, achieving 
noteworthy gains of (4.2%, 6.6%), (8.9%, 11.3%) and (6.7%, 
9.6%), respectively. And DRCI (v2) is batter than it with 
(4.6%, 7.0%), (9.1%, 11.3%) and (5.8%, 8.7%). It can be 
seen that the performance difference between DRCI (v1) 

Fig. 3  Overall performance of hand-crafted trackers on vari-
ous data sets, including UAVDT, DTB70, VisDrone2018 and 
UAV123@10fps, is evaluated using precision and success rate for 
one-pass evaluation (OPE). Precision at 20 pixels and the area under 

the curve (AUC) are employed as evaluation metrics, and they are 
indicated on the precision plots and success plots, respectively, to 
determine the ranking. The performance is assessed from left to right 
on the mentioned data sets
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and DRCI (v2) in these three UAV benchmarks is not sig-
nificant. Even DRCI (v2) performs better than DRCI (v1) 
on the two UAV benchmarks. On VisDrone2018, our DRCI 
(v2) is inferior to the first tracker RACF in precision and 
success, the gaps are 6.0% and 3.8%, the gap between DRCI 
(v1) and it are 3.8% and 2.3%, respectively. This variance 
in performance can be attributed to RACF’s parameter 
optimization specifically tailored to the characteristics of 
particular data sets. In contrast, our DRCI doesn’t depend 
on data set-specific parameter tuning, potentially resulting 
in slightly lower performance compared to methods fine-
tuned for data set-specific nuances. In terms of precision, 
DRCI (v1) also slightly outperforms MCCT-H, ARCF-HC, 
and ECO-HC, with the maximum gap being 1.1%. And it is 
surpass ECO-HC and ARCF-HC in terms of success, with 
the maximum gap being 0.7%. Even if model quantification 
methodologies is used on DRCI (v2), performed slightly 
worse than other methods only on this UAV benchmarks, 
but outperformed all compared methods on the other three 
UAV benchmarks, even higher than DRCI (v1). This alone 
indicates that model quantization is successful in UAV track-
ing, as the speed improvement of DRCI (v2) on a single 
CPU is even more astonishing. Regarding speed, we evaluate 
tracking performance using the average Frames Per Second 
(FPS) across the four UAV benchmarks mentioned. Table 1 
presents the average precision and FPS results for various 
trackers. It is evident that both DRCI (v1) and DRCI (v2) 
outperform all other competing trackers in terms of preci-
sion and stand out as the top-performing real-time trackers 
with a speed exceeding 30 FPS on CPU. Our DRCI (v1) 
has achieved an impressive precision rate of 79.7% while 
maintaining a high speed of 58.9 frames per second (FPS). 
Specifically, although DRCI (v2) achieved the precision of 
79.1%, which is 0.6% lower than DRCI (v1), it achieved 85.4 
FPS on CPU speed, which is 45.0% higher than DRCI (v1). 
In addition, it is three times that of the best real-time tracker 
(speed of >30FPS) on CPU. Taking the reduced precision 
as a percentage, DRCI (v2) is only 0.7% lower than DRCI 
(v1). Compared to the 45.0% increase on CPU speed, this 
precision loss can be negligible. Therefore, the proposed 
DRCI (v2) achieves a better balance between efficiency and 
precision, which DRCI (v1) cannot achieve.

Attribute-based evaluation: Our DRCI (v1) and DRCI 
(v2) outperform other competing DCF-based trackers in 
most of the attributes defined in each of the four benchmark 
tests. Examples of success plots are shown in Fig. 4. To 
demonstrate that our method is universal with strong robust-
ness and achieve a balance of precision and efficiency in 
the vast majority of cases, we present 8 different attributes 
across the four UAV benchmarks. As can be seen, in the 
situations of Illumination variation and Viewpoint chang 
on UAV123@10fps [46], Deformation and Scale variatio 
on DTB70 [44], Object blur and Small object on UAVDT Ta
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[29], Out-of-view and aspect ratio change on VisDrone2018 
[45], DRCI (v1) and DRCI (v2) demonstrate significant 
improvements over other trackers because the effectiveness 
of feature representation with deep learning, justifying the 
effectiveness of developing lightweight deeper trackers for 
UAV tracking. It can be clearly observed from the figure 
that DRCI (v2) and DRCI (v1) have nearly identical perfor-
mance, especially in the UAV123@10fps and DTB70 UAV 
benchmarks. Although there is a gap between UAVDT and 
VisDrone2018 UAV benchmarks, overall, our DRCI (v1) 
and DRCI (v2) are very close, which can be said to achieve 
a balance between precision and speed. Specifically, in the 
UAV123@10fps [46] among the Viewpoint change attrib-
utes, DRCI (v2) has the 10.4% and 13.3% higher preci-
sion and success rate than the second best RACF, respec-
tively. The precision and success rate of DRCI (v2) even 
better than the second method with 15.1% and 18.6%, in 
Scale variation attributes of the DTB70 [44]. This further 
proves that our DRCI (v1) and DRCI (v2) has excellent 
performance in improving scale and viewpoint changes. 
In addition, although other attributes do not have as much 

improvement as these two attributes, there are also quite 
better improvements in other specific attributes. The effect 
on VisDrone2018 [45] is still not ideal, but compared to 
Fig. 3, there has been a significant improvement, with the 
vast majority of differences only around 1.0% compared to 
the best method RACF [7].

4.4  Comparison with DL‑based trackers

On the UAVDT [29] and DTB70 [44] data set the pro-
posed DRCI (v1) and DRCI (v2) is also compared with 
twelve state-of-the-art (SOTA) DL-based trackers, includ-
ing AutoMatch [54], SparseTT [51], HiFT [2], SLT-TransT 
[50], TCTrack [36], P-SiamFC++ [3], SiamGAT [52], 
F-SiamFC++ [4], DropTrack [49], SeqTrack [48], MAT 
[53], Aba-ViTrack [37]. The table in Table  2 displays 
the FPS and precision results on UAVDT and DTB70. It 
is evident that our DRCI (v1) exhibits superior precision 
and GPU speed compared to competing DL-based track-
ers. Specifically, it outperforms the second-ranked tracker, 
Aba-ViTrack [37], by a margin of 0.7% in precision, while 

Fig. 4  Attribute-based comparison on illumination variation, 
viewpoint change, deformation, scale variation, object blur, small 
object, out-of-view and aspect ratio change. From a to d represent 

UAV123@10fps [46] DTB70 [44], UAVDT [29] and VisDrone2018 
[45], respectively. And each column shows the PRC and AUC of two 
different attributes of one data set
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achieving a GPU speed that is more than 70.3% faster than 
Aba-ViTrack on UAVDT. Although our DRCI (v2) preci-
sion is 0.9% lower than DRCI (v1), it has reached 536.9 
FPS on GPU speed, which is 79.9% higher than DRCI (v1). 
Although slightly inferior in precision to DRCI (v1), it can 
still rank third. Although 0.2% lower than Aba-ViTrack who 
ranks second in precision, it is 3 times faster than Aba-ViT-
rack on GPU speed. On DTB70, our DRCI (v2) ranks first, 
with a precision 0.2% higher than the second-ranked DRCI 
(v1), but is almost twice as fast in speed. The outcomes 
not only affirm the capability of our proposed method to 
develop a lightweight DL-based tracker with notably supe-
rior tracking precision and efficiency but also validate our 
unique approach to tackling the challenge of low perfor-
mance in UAV tracking through a novel feature-learning 
perspective. This strategy effectively amplifies the discrimi-
native potential of feature representations, contributing to 
enhanced tracking capabilities. Moreover, the substantial 
surge in speed observed on the GPU serves as a testament to 
the success of our utilization of quantization techniques in 
UAV tracking. With quantization, the precision of numeri-
cal representations in network parameters and activations 
is reduced, typically from floating point to lower precision 
fixed point. This reduction in precision can reduce mem-
ory footprint, reduce computational requirements, and 
speed up inference times. This achievement highlights the 
effectiveness and success of our strategies in optimizing 
computational efficiency while maintaining tracking accu-
racy, signifying a notable advancement in UAV tracking 
methodologies.

4.5  Qualitative comparison with SOTA trackers

We are displaying qualitative tracking results of our method 
alongside six state-of-the-art trackers, i.e., TCTrack [36], 

HiFT [2], RACF [7], AutoTrack [54], ARCF-HC [10] 
and ECO-HC [41] in Fig. 5. We mainly select two video 
sequences from each of the four UAV benchmarks, which 
are person1_s and wakeboard6 of UAV123@10fps, Basket-
ball and BMX4 of DTB70, S0309 and S0310 of UAVDT, 
uav0000074_01656_s and uav0000164_00000_s of Vis-
trone2018 from top to bottom. It is evident that among 
all trackers, only our DRCI (v1) and DRCI (v2) consist-
ently succeed in tracking targets across all eight challeng-
ing examples. These scenarios involve objects encounter-
ing illumination changes and severe shadow occlusion 
(i.e., persion1_s and BMX4 ), as well as pose variations 
(i.e., BMX4 and S0309 ). The capability of our trackers to 
maintain successful tracking in these diverse and challeng-
ing scenarios highlights their robustness and adaptability 
in handling complex real-world conditions. In scenarios 
involving ultra-long distance tracking of small targets and 
dealing with challenges like water surface reflection due to 
sunlight (i.e., wakeboard6 ), our DRCI (v1) and DRCI (v2) 
exhibit consistent and accurate tracking throughout. Par-
ticularly in the final frame, where other methods lose track, 
only our method maintains precise tracking. To further 
underscore the robustness of DRCI, we deliberately selected 
a video sequence showcasing low illumination in dark set-
tings and multiple intertwined fluorescent lamps affecting 
each other, presenting challenges in tracking a blurred tar-
get. Our method exhibits a remarkable ability to accurately 
track the target under such challenging conditions, surpass-
ing the capabilities of other methods in achieving accurate 
tracking. In scenarios where the tracking target includes 
similar objects in an ultra-long video sequence or severe 
noise interference, our tracking performance surpasses that 
of other methods. Notably, upon closer scrutiny, the distinc-
tion between DRCI (v1) and DRCI (v2) appears minimal. In 
these challenging cases, our method consistently showcases 
markedly improved performance and yields visually supe-
rior results compared to alternative methods. This further 
reinforces the efficacy of our proposed approach, particu-
larly in learning discriminative representations using con-
trastive instances within the realm of UAV tracking. These 
emphasize the robustness and reliability of our method in 
handling diverse and complex tracking scenarios. In Fig. 6, 
it is evident that every tracker eventually fails to maintain 
target tracking. The first case involves a blurred car under-
going substantial pose changes, while the second deals with 
tracking a fast-moving small UAV. In the third case, the 
task is to track a single goat amidst a group of others, and 
the final challenge is tracking a person who becomes fully 
occluded while in motion. These examples highlight the 
difficulties posed by factors, such as fast motion, clustered 
backgrounds, extreme visual angle changes, and severe 
occlusion. Their outcomes underscore the ongoing chal-
lenges in UAV tracking efforts.

Table 2  Comparative analysis of precision and speed (measured in 
frames per second—FPS) between DRCI and deep-based trackers 
specifically on the UAVDT [29] and DTB70 [44] data set. Red, blue 
and green indicate the first, second and third place

Tracker UAVDT Tracker DTB70

PRC FPS PRC FPS

DRCI(v1) 84.0 298.3 DRCI(v1) 81.4 297.7
DRCI(v2) 83.1 536.9 DRCI(v2) 81.6 578.2
SeqTrack [48] 79.0 13.2 F-SiamFC++ [4] 81.3 250.4
DropTrack [49] 77.2 23.6 P-SiamFC++ [3] 80.3 238.2
SLT-TransT [50] 82.9 29.9 TCTrack [36] 81.2 128.0
SparseTT [51] 82.8 45.1 HiFT [2] 77.8 133.5
Aba-ViTrack [37] 83.3 175.2 SiamGAT [52] 79.7 72.1
MAT [53] 72.9 71.2 AutoMatch [54] 71.6 42.8
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4.6  Ablation study

Effect of discriminative representation learning (DRL)
We conducted comparisons between the proposed DRCI 

(v1) and DRCI (v2) against the baseline P-SiamFC++ 

across all four UAV benchmarks, evaluating model size, 
precision, and tracking speed to assess their effectiveness. 
These comparisons are outlined in Table 3. Notably, the 
model size of DRCI (v1) has been reduced to 67.4% ( ≈
5.05/7.49) of its original size. In addition, there have been 

Table 3  Comparison table highlights the differences in model size (measured in parameters), precision (PRC), and tracking speed between the 
proposed DRCI and the baseline method P-SiamFC++ across four UAV benchmarks

Methods Parameters UAV123@10fps DTB70 UAVDT VisDrone2018 Avg.

PRC FPS PRC FPS PRC FPS PRC FPS PRC FPS
CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

P-SiamFC++  7.49M 73.1 45.1 236.4 80.3 45.6 238.2 80.7 48.8 258.8 80.9 45.0 230.5 78.8 46.1 241.0
DRCI (v1) 5.05M 73.6 59.2 300.7 81.4 60.1 297.7 84.0 59.4 298.3 79.6 57.0 284.6 79.7 58.9 295.3
DRCI (v2) 5.05M 74.0 86.5 560.4 81.6 83.3 578.2 83.1 85.0 536.9 77.4 86.7 557.2 79.1 85.4 558.2

Fig. 5  Qualitative evaluation on 
8 sequences from, respectively, 
UAVDT, UAV123@10fps, 
DTB70 and VisDrone2018. The 
different colors represent the 
different tracking results
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improvements in both CPU and GPU speeds. On average, 
the CPU speed increased from 46.1 to 58.9 FPS, while 
the GPU speed surged from 241.0 to 295.3 FPS. Despite a 
marginal 1.3% precision deficit compared to the baseline 
on the VisDrone2018 data set, DRCI (v1) demonstrates 
noteworthy improvements on the DTB70 and UAVDT data 
sets. Particularly, it achieves gains of 1.1% and 3.3% in 
precision, respectively, on these data sets. These results 
underscore the strides made by DRCI (v1) in achiev-
ing a more compact model size while enhancing track-
ing speeds and maintaining competitive precision levels 
across various benchmarks. When compared to the base-
line P-SiamFC++, our DRCI (v2) not only demonstrates a 
superior precision by 0.3% but also achieves a remarkable 
85.2% increase in speed on a single CPU. Moreover, it 
achieves a 1.3 times faster speed than P-SiamFC++ when 
evaluated in terms of GPU speed. Notably, the improve-
ments in tracking speed for DRCI (v2) compared to DRCI 
(v1) are striking. On average, the CPU speed elevates from 
58.9 FPS to an impressive 85.4 FPS, while the GPU speed 
surges from 295.3 FPS to a remarkable 558.2 FPS. While 

slightly trailing behind DRCI (v1) on UAVDT and Vis-
Drone2018 benchmarks, DRCI (v2) surpasses DRCI (v1) 
on other UAV benchmarks. It is noteworthy that DRCI 
(v2) achieves a 45.0% higher CPU speed and an 89.0% 
enhanced GPU speed compared to DRCI (v1). These 
outcomes strongly support the effectiveness of adopting 
deep reinforcement learning (DRL) as an innovative fea-
ture-learning perspective to enhance UAV tracking. This 
approach significantly enhances both efficiency and preci-
sion, reaffirming its substantial value and impact within 
the field.

Impact of loss LDRL : To gauge the influence of the DRL 
(deep reinforcement learning) loss on DRCI’s precision, we 
undertook training iterations using diverse DRL loss weights 
and subsequently conducted evaluations across four distinct 
benchmarks. Throughout this evaluation process, we sys-
tematically adjusted the weight parameter � , referenced in 
Eq. 4, across a range from 0.0 to 1.0, incrementally increas-
ing by 0.1. This methodical variation enabled a comprehen-
sive exploration of how manipulating the DRL loss weight 
impacted the precision of the DRCI model across the suite 

Fig. 6  Qualitative evaluation on 
4 sequences from, respectively, 
UAVDT, UAV123@10fps, 
DTB70 and VisDrone2018. The 
different colors represent the 
different tracking results

Table 4  Depicting the 
fluctuation in DRCI’s precision 
across the four benchmarks 
concerning the weight 
parameter ( � ) associated with 
discriminative representation 
learning loss

� 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DTB70 80.5 81.5 80.1 78.9 79.0 80.4 78.6 78.1 78.9 77.9
UAVDT 76.2 84.0 82.7 81.9 78.9 80.8 81.8 78.9 76.5 79.5
UAV123@10fps 72.8 72.1 69.9 70.0 69.4 70.8 71.2 70.7 69.3 69.5
VisDrone2018 72.5 79.6 76.9 77.4 76.4 76.0 76.0 74.5 77.5 74.5
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of benchmarks. Table 4 provides a detailed presentation of 
the precision outcomes for DRCI across varying values of 
� on four benchmarks. It is important to note that � = 0.0 
corresponds to the performance of the baseline tracker, 
P-SiamFC++. The results highlight that setting � to 0.1 
yields the highest precision across four benchmarks, except 
for UAV123@10fps. Notably, substantial improvements in 
precision are observed on UAVDT and VisDrone2018 when 
� surpasses 0.0, indicating the beneficial impact of inte-
grating the proposed DRL loss into the DRCI framework. 
While precision experiences fluctuations on DTB70 and 
UAV123@10fps, the overall trend emphasizes that the most 
optimal precisions are achieved when � is approximately 
set to 0.1. This outcome underscores the effectiveness of 
judiciously applying the proposed DRL loss, substantiating 
its ability to enhance the baseline tracker’s precision and 
further validates the effectiveness of the proposed DRCI 
methodology.

5  Conclusion

In this work, we pioneer the exploration of learning dis-
criminative representations using contrastive instances 
for UAV tracking. This approach not only eliminates 
the need for manual annotations but also facilitates the 
development and deployment of lightweight models. Our 
proposed DRCI has shown its capability to acquire more 
efficient and compact representations, leading to state-
of-the-art performance across four UAV benchmarks 
in terms of both efficiency and tracking precision. We 
anticipate that our work will inspire further efforts in the 
development of more effective and efficient lightweight 
DL-based trackers for UAV tracking applications. On 
the other hand, the approach taken to mitigate the sub-
stantial reduction in precision involved a compromised 
quantization process, wherein the model was quantized 
from float 32 to float 16 bits. As a result, an interesting 
avenue for future research could focus on exploring more 
efficient and effective quantization techniques that have 
the potential to further enhance the model’s efficiency 
without compromising precision.
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