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Abstract—Maintaining high efficiency and high precision are
two fundamental challenges in UAV tracking due to the con-
straints of computing resources, battery capacity, and UAV
maximum load. Discriminative correlation filters (DCF)-based
trackers can yield high efficiency on a single CPU but with
inferior precision. Lightweight Deep learning (DL)-based track-
ers can achieve a good balance between efficiency and pre-
cision but performance gains are limited by the compression
rate. High compression rate often leads to poor discriminative
representations. To this end, this paper aims to enhance the
discriminative power of feature representations from a new
feature-learning perspective. Specifically, we attempt to learn
more disciminative representations with contrastive instances for
UAV tracking in a simple yet effective manner, which not only
requires no manual annotations but also allows for developing
and deploying a lightweight model. We are the first to explore
contrastive learning for UAV tracking. Extensive experiments
on four UAV benchmarks, including UAV123@10fps, DTB70,
UAVDT and VisDrone2018, show that the proposed DRCI tracker
significantly outperforms state-of-the-art UAV tracking methods.

Index Terms—UAV tracking, Discriminative representation,
Contrastive learning, Contrastive Instances

I. INTRODUCTION

UAV tracking aims to infer and predict the location and

scale of arbitrary objects in consecutive aerial image frames

and has a broad range of potential applications in naviga-

tion, agriculture, transportation, disaster response, and public

safety [1]–[5]. Compared with general object tracking, UAV

tracking is challenging due to motion blur, severe occlusion,

extreme viewing angle, and scale changes, making it difficult

to achieve high precision. In addition, limited computing re-

sources, low power requirements, battery capacity limitations,

and the maximum load of UAVs also pose a considerable

challenge to tracking efficiency [3], [4], [6].

Maintaining high efficiency and high precision are two

fundamental challenges in UAV tracking. Discriminative cor-

relation filters (DCF)-based trackers dominate in this field

because of their high efficiency on a single CPU. However,

their precisions are not comparable to most cutting-edge deep

learning (DL)-based trackers [1], [7]–[9]. DL-based trackers

are well known for their high precision, but they usually

rely on complex architecture, leading to low efficiency. To

combat efficiency drop, some lightweight DL-based trackers

have recently been proposed for UAV tracking [3], [4], [10],

[11], which mainly utilize model compressing techniques such

as filter pruning to boost efficiency while maintaining high

precision. Unfortunately, the filter pruning methods utilized by

these works such as rank-based filter pruning [3] and Fisher

pruning [4], though simple, the achieved tracking precision

and efficiency are very limited and far from satisfactory. The

performance limitation is because the high compression rates

of these methods are prone to produce inferior discriminative

representations. To this end, in this paper, we explore dealing

with low performance in UAV tracking from a new feature-

learning perspective to enhance the discriminative power of

feature representations.

Contrastive learning is a discriminative approach that aims

to learn an embedding space where similar sample pairs (aka

positive pairs) stay close to each other and dissimilar ones (aka

negative pairs) are far apart. It has been successfully used in

many vision tasks such as image classification [12], image-

to-image translation [13], text-to-image generation [14], and

natural language understanding [15]. It is worth nothing that

contrastive learning has also been applied to single object

tracking [16], [17] and multiple object tracking [18], [19].

However, these methods usually require collecting additional

annotations for positive pairs which is expensive and time-

consuming [17]. Or contrastive learning of these methods

is intertwined with heavy and complicated tracking frame-

works [16], [18], [19], making it impossible to transfer the

learning mechanism to UAV tracking. In this paper, we attempt

to utilize contrastive learning for UAV tracking in a simple

yet effective manner, which not only requires no manual

annotations but also allows for developing and deploying a

lightweight model.

Specifically, we use intra- and inter-video templates of

targets as our contrastive instances to facilitate discrimina-
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tive representation learning for UAV tracking. Unlike classic

contrastive learning [12] where positive pairs are constructed

from image augmentation, we construct positive pairs from a

video. To avoid selecting hard positive samples (e.g., occluded

target), we empirically randomly select 2 frames from the

video to construct positive sample pairs as we observe most

of the positive sample pairs are of good quality. As a result,

the proposed tracker learns discriminative representations with

contrastive instances (DRCI), which achieves state-of-the-art

efficiency and precision compared with existing CPU-based

and lightweight DL-based trackers in UAV tracking. In the

inference stage, there is no additional computation burden

when applying our DRCI.

To sum up, this paper makes the following contributions:

• We make the first attempt to explore contrastive learning

for UAV tracking, a new feature-learning perspective to

obtain lightweight DL-based trackers with better tracking

precision and efficiency.

• We propose the DRCI tracker that learns discriminative

representations with contrastive instances, achieving a

remarkable balance between tracking efficiency and pre-

cision.

• We demonstrate the proposed method on four public UAV

benchmarks. Experimental results show that the proposed

DRCI tracker achieves state-of-the-art performance.

II. RELATED WORK

A. UAV Tracking Methods

Modern trackers can be roughly divided into two categories:

DCF-based trackers and DL-based trackers. The former dom-

inates in UAV tracking with its more favorable efficiency.

DCF-based trackers start with a minimum output sum of

squared error (MOSSE) filter. Since then, DCF-based trackers

have made great progress in many variants [6], including

state-of-the-art UAV tracking methods [1], [6], [7], [20]–[22].

Despite their relatively higher efficiency, they are difficult to

maintain robustness under challenging conditions due to the

poor representation ability of handcrafted features.

Thanks to the powerful feature representation ability, deep

learning has proven to be very successful in visual tracking in

recent years. To substantially improve tracking precision and

robustness, some DL-based trackers have recently been devel-

oped for UAV tracking. For instance, Cao et al. [2] proposed

a hierarchical feature transformer to enable interactive fusion

of spatial (shallow layers) and semantics cues (deep layers)

for UAV tracking. Fu et al. [23] proposed a two-stage Siamese

network-based method in which high-quality anchor proposals

are generated in stage 1 and then refined in stage 2. Cao et

al. [24] proposed a comprehensive framework to fully exploit

temporal contexts with an adapative temporal transformer for

aerial tracking. However, the efficiency of these methods is still

much lower than most DCF-based trackers. To further improve

the efficiency of DL-based trackers for UAV tracking, model

compression techniques have been recently utilized to reduce

model size [3], [4]. Unfortunately, the model compression

methods used by these works, although simple, still cannot

achieve satisfying tracking precision at higher compression

rates. In contrast, in this paper, we explore dealing with low

performance in UAV tracking from a new feature-learning

perspective (i.e., contrastive learning) to enhance the discrim-

inative power of feature representations.

B. Contrastive Learning

Contrastive learning aims at learning representations by con-

trasting between similar and dissimilar samples. Specifically,

it attempts to bring similar samples closer together in the

representation space while pushing dissimilar ones apart. It has

received a great deal of attention because of its outstanding

performance in the field of self-supervised learning [12]–

[15]. Although contrastive learning has been deployed in

many fields, until recently it was applied to multiple object

tracking [18], [19] and single object tracking [16], [17]. For

instance, Pang et al. [18] presented a quai-dense similarity

learning that densely samples hundreds of region proposals

on a pair of images for contrastive learning to exploit most

informative regions on images. Yu et al. [19] proposed a

trajectory-level contrastive loss to exploit the inter-frame in-

formation contained in the entire trajectory of a certain target.

Wu et al. [16] proposed a progressive unsupervised learning

(PUL) framework, which is the first discrimination model

that learn to effectively distinguish objects from backgrounds

in a contrastive learning manner. Pi et al. [17] developed

instance-aware and category-aware modules to exploit differ-

ent semantic levels with contrastive learning to produce robust

feature embeddings. However, these methods usually require

collecting additional annotations for positive pairs which is

expensive and time-consuming [17]. Or contrastive learning

of these methods is intertwined with heavy and complicated

tracking frameworks [16], [18], [19], making it impossible

to transfer the learning mechanism to UAV tracking. In this

paper, we attempt to leverage contrastive learning in a simple

yet effective manner to achieve more discriminative feature

representations to improve both precision and efficiency of

lightweight DL-based trackers for UAV tracking.

III. LEARNING DISCRIMINATIVE REPRESENTATION WITH

CONTRASTIVE INSTANCES

A. DRCI Overview

As illustrated in Fig. 1, the proposed DRCI consists of a

backbone, a neck, a head network and a discriminative repre-

sentation learning (DRL) module. Specifically, the backbone

network φ(·) is a Siamese network, shared by the template

branch and the search branch, which take template image Z
and search image X as input, respectively. The neck contains

four convolutional layers to adjust feature sizes. The head

consists of two dense head branches followed by three con-

volutional layers to produce outputs for classification, quality

assessment, and regression tasks. Backbone features from two

branches are adjusted at the neck and then coupled with cross-
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Fig. 1. An illustration of the proposed DRCI method. Note that ψ·
cls and ψ·

reg denote the task-specific convolutional layers for classification and regression,

respectively. The template Z is taken as an anchor in our contrastive learning while Z+ and Z− are positive and negative samples, respectively.

correlation before they are finally fed into the classification and

regression heads. The coupling features are formulated by:

fl(Z,X) = E2(ψ
z
l (φ(Z))) � E2(ψ

x
l (φ(X))), l ∈ {cls, reg}, (1)

where � denotes the cross-correlation operation, E2 represents

the encoder for identity-related feature embedding. ψx
cls(·) and

ψx
reg(·) denote the task-specific layer for classification and

regression, respectively, with the same output size. ψz
cls(·) and

ψz
reg(·) have the similar meaning. In the training stage, we use

a DRL module to enhance the discriminative power of feature

representations for UAV tracking. In the inference stage, the

DRL module is removed, so there is no additional computation

burden when applying our DRCI.

B. Discriminative Representation Learning (DRL)

The DRL module utilizes a project head Proj(·) to project

the backbone features into an embedding space that the

similarity of the backbone features, hopefully, can be well

evaluated by a relatively simple distance function. For simpil-

icty, we instantiate the projection head as fully connected

layer followed by a ReLU activation, similar to SimCLR [12].

A more refined design of the projection head could lead to

further performance improvements, which we leave for future

research. To obtain instance samples for contrastive learning,

we first randomly sample a minibatch of N frame pairs from

N different sequences. We then crop the target templates from

each frame, yielding N positive pairs and (C2
N −N ) negative

constrative pairs. Denote these contrastive template samples

as {Zi}2Ni=1, let I ≡ {1, ..., 2N} and j(i) be the index of

the other sample originating from the same target, i.e., Zi

and Zj(i) make a positive pair, denoted by Zi ↔ Zj(i). We

adopt the supervised contrastive loss proposed in [25] for our

discriminative representation learning, except that the negative

sample pairs are pseudo or not ground truth, which takes the

following form,

LDRL =
∑

i∈I

1

|P (i)|
∑

p∈P (i)

log
exp(zi · zp/τ)∑

a∈A(i) exp(zi · za/τ)
, (2)

where zi = Proj(φ(Zi)), · denotes the inner product, τ ∈ R
+

is a scalar temperature parameter, A(i) = I \ {i}, P (i) =
{p ∈ A(i) : Zp ↔ Zi} is the set of indices of all positive

samples in the minibatch of i except itself, and |P (i)| denotes

the cardinality of P (i). The DRL loss tries to increase the

similarity between feature representations of the targets in the

same sequence, while suppressing that of different sequences.

C. Classification, Regression and Quality Assessment Losses

The classification branch predicts the category for each lo-

cation and the regression branch calculates the target bounding

box for that location. The outputs of two branches are repre-

sented as Ocls
h×w×2 and Oreg

h×w×4, respectively, and w and h
denote the width and height. Specifically, Ocls

h×w×2(i, j, :) is a

2D vector, representing the foreground and background scores

at position (i, j). Oreg
h×w×4(i, j, :) is a 4D vector, representing

the distances from the corresponding position to the four sides

of the bounding box. At the same time, the quality assessment

branch, with output being Oqs
h×w×1, is in parallel with the

classification branch to assess classification quality, which is

finally used to reweight the classification score. Following P-

SiamFC++ [3], the losses for learning these tasks is as follows:

LCRQ =
1

Npos

∑

z

(Lcls(pz, p
∗
z) + λ1I{p∗z>0}Lreg(tz, t

∗
z)+

λ2I{p∗z>0}Lqs(qz, q
∗
z ))

(3)

where Lcls, Lreg and Lqs denote the focal loss, the IoU

loss and the binary cross entropy loss for classification,

regression and quality assessment, respectively. z represents

a coordinate on a feature map, pz is a prediction while p∗z is

the corresponding target label, I{·} is the indicator function,

Npos =
∑

z I{p∗
z>0}. λ1 and λ2 are weight terms to balance

the losses. Note that p∗z is assigned 1 if z is considered a

positive sample, otherwise 0 if it is considered a negative

sample.

Taken together, the overall loss for training our DRCI is:

L = LCRQ + ρLDRL, (4)
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Fig. 2. Overall performance of hand-crafted based trackers on datasets, from left to right, UAV123@10fps, DTB70, UAVDT and VisDrone2018. Precision
and success rate for one-pass evaluation (OPE) are used for evaluation. The precision at 20 pixels and area under curve (AUC) are used for ranking, marked
in the precision plots and success plots, respectively.

TABLE I
AVERAGE PRECISION AND SPEED (FPS) COMPARISION BETWEEN DRCI AND HAND-CRAFTED BASED TRACKERS ON UAV123@10FPS, DTB70, UAVDT

AND VISDRONE2018. ALL THE REPORTED FPSS ARE EVALUATED ON A SINGLE CPU. RED, BLUE AND GREEN RESPECTIVELY INDICATE THE FIRST,
SECOND AND THIRD PLACE.

KCF [26] fDSST [27] BACF [28] ECO-HC [29] STRCF [30] ARCF-HC [7] AutoTrack [1] RACF [6] DRCI (Ours)
Precision 53.3 60.4 64.2 68.8 67.1 71.9 72.3 75.7 79.7

FPS (CPU) 622.5 193.4 54.2 84.5 28.4 34.2 58.7 35.7 58.9

where ρ is a constant coefficient to balance LCRQ and LDRL.

IV. EXPERIMENTS

We conduct our experiments on four challenging UAV

benchmarks, i.e., UAV123@10fps [36], DTB70 [37], UAVDT

[31] and VisDrone2018 [38]. All evaluation experiments

are conducted on a PC equipped with i9-10850K processor

(3.6GHz), 16GB RAM and an NVIDIA TitanX GPU. The

backbone, neck, and head architectures are inherited from F-

SiamfC++ but with block-wise pruning ratios of 0.7, 0.5 and

0.3, respectively. The temperature parameter τ is set to 0.5.

The default setting of ρ is 0.1 and other parameters such as λ1

and λ2 for training and inference follow P-SiamFC++. Code

wiil be available on: https://github.com/DRCI2022.

A. Comparison with CPU-based Trackers

Eight state-of-the-art trackers based on hand-crafted features

for comparison are: KCF [26], fDSST [27], BACF [28], ECO-

HC [29], STRCF [30], ARCF-HC [7], AutoTrack [1], RACF

[6].

The overall performance of DRCI with the competing

trackers on the four benchmarks is shown in Fig. 2. It can

be seen that DRCI outperforms all other trackers on all

benchmarks except for the VisDrone2018. Specifically, on

UAV123@10fps, DTB70 and UAVDT, DRCI significantly

outperforms the second tracker RACF in terms of precision

and AUC, with gains of (4.2%, 6.6%), (8.9%, 11.3%) and

(6.7%, 9.6%), respectively. On VisDrone2018, our DRCI is

inferior to the first tracker RACF in precision and AUC, the

gaps are 3.8% and 2.3%, respectively. The reason is that the

parameters of RACF is dataset specific, while our DRCI is

not. DRCI is also slightly better than ECO-HC, MCCT-H,

and ARCF-HC in precision with a max gap being 1.1%,

and surpassed by ARCF-HC and ECO-HC in AUC with a

max gap being 0.7%. In terms of speed, we use the average

FPS over the aforementioned four benchmarks on CPU as a

tracking metric. Table I illustrates the average precision and

FPS produced by different trackers. It can be seen that DRCI

outperforms all competing trackers in precision, and is the

best real-time tracker (speed of >30FPS) on CPU. Specifically,

DRCI achieves 79.7% in precision at a speed of 58.9 FPS.

B. Comparison with DL-based Trackers

The proposed DCRI is also compared with eight state-

of-the-art DL-based trackers on the UAVDT dataset [38],

including SiamGAT [32], HiFT [2], AutoMatch [33], SLT-

SiamRPN++ [34], SparseTT [35], TCTrack [24], F-SiamFC++

[4], P-SiamFC++ [3].

The FPSs and the precisions on UAVDT are shown in

Table II. As can be seen, the precision and the GPU speed

of our DRCI outperform that of the competing DL-based

trackers, surpassing the second tracker SparseTT [35] by 1.2%

in precision, and its GPU speed is more than 6 times faster

than the second tracker SparseTT [35]. This not only verifies

that the proposed method can obtain a lightweight DL-based

tracker with better tracking precision and efficiency, but also

supports our solution to address the low performance in UAV

tracking from a new feature-learning perspective, which indeed

enhances the discriminative power of feature representations.
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TABLE II
PRECISION AND SPEED (FPS) COMPARISON BETWEEN DRCI AND DEEP-BASED TRACKERS ON UAVDT [31]. ALL THE REPORTED FPSS ARE

EVALUATED ON A SINGLE GPU. RED, BLUE AND GREEN INDICATE THE FIRST, SECOND AND THIRD PLACE.

SiamGAT [32] HiFT [2] AutoMatch [33] TCTrack [24] F-SiamFC++ [4] P-SiamFC++ [3] SLT-TransT [34] SparseTT [35] DRCI (Ours)
Precision 76.4 65.2 73.8 69.6 79.4 80.7 82.9 82.8 84.0

FPS (GPU) 71.0 137.3 43.1 125.7 266.2 258.8 29.9 45.1 298.3

TABLE III
COMPARISON OF MODEL SIZE (PARAMETERS), PRECISION AND TRACKING SPEED BETWEEN THE PROPOSED DRCI AND THE BASELINE METHOD

P-SIAMFC++ ON FOUR UAV BENCHMARKS. PRC IS SHORT FOR PRECISION. NOTE THAT ONLY THE PRECISION ON CPU IS SHOWN HERE SINCE THE

DIFFERENCE OF PRECISION ON CPU AND GPU IS VERY SMALL.

Methods Parameters
UAV123@10fps DTB70 UAVDT VisDrone2018 Avg.

PRC
FPS

PRC
FPS

PRC
FPS

PRC
FPS

PRC
FPS

CPU GPU CPU GPU CPU GPU CPU GPU CPU GPU

P-SiamF++ [3] 7.49M 73.1 45.1 236.4 80.3 45.6 238.2 80.7 48.8 258.8 80.9 45.0 230.5 78.8 46.1 241.0
DRCI (Ours) 5.05M 73.6 59.2 300.7 81.4 60.1 297.7 84.0 59.4 298.3 79.6 57.0 284.6 79.7 58.9 295.3

Fig. 3. Qualitative evaluation on 3 sequences from, respectively,
UAV123@10fps, DTB70 and UAVDT (i.e. person1 s, BMX4 and S0309).
The results of different methods are represented by different colors.

C. Qualitative Comparison with SOTA Trackers

We show some qualitative tracking results of our method

and six state-of-the-art trackers in Fig. 3. As can be seen,

only our tracker DRCI successfully track the targets in all

three challenging examples, where the objects are experiencing

illumination change (i.e., persion1 s and BMX4) or pose

variations (i.e., BMX4 and S0309). Our method performs

much better and is more visually pleasing in these cases,

further supporting the effectiveness of the proposed method

of learning discriminative representation using contrastive in-

stances for UAV tracking.

D. Ablation Study

Effect of Discriminative Representation Learning
(DRL): We compare the proposed DRCI with the base-

line P-SiamFC++ on all four UAV benchmarks in terms of

TABLE IV
ILLUSTRATION OF HOW THE PRECISION OF DRCI ON THE FOUR

BENCHMARKS VARIES WITH THE WEIGHT (I.E., ρ.) OF THE LOSS OF

DISCRIMINATIVE REPRESENTATION LEARNING.

ρ 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

DTB70 80.5 81.5 80.1 78.9 79.0 80.4 78.6 78.1 78.9 77.9
UAVDT 76.2 84.0 82.7 81.9 78.9 80.8 81.8 78.9 76.5 79.5

UAV123@10fps 72.8 72.1 69.9 70.0 69.4 70.8 71.2 70.7 69.3 69.5
VisDrone2018 72.5 79.6 76.9 77.4 76.4 76.0 76.0 74.5 77.5 74.5

model size, precision and tracking speed to understand its

effectiveness. Their comparisons are shown in Table III. As

can be seen, the model size of DRCI is reduced to 67.4%

(≈5.05/7.49) of the original. Both CPU and GPU speed

have been increased. Specifically, on average, the CPU speed

increased from 46.1 FPS to 58.9 FPS while the GPU speed

increased from 241.0 FPS to 295.3 FPS. Although DRCI is

slightly inferior to the baseline on VisDrone2018 in precision

by 1.3%, the improvement on DTB70 and UAVDT is signifi-

cant, specifically, with gains of 1.1% and 3.3%, respectively.

These results justify that the effectiveness of using DRL (a

new feature-learning perspective) to assist UAV tracking by

improving both efficiency and precision.

Impact of loss LDRL: To see how the DRL loss affects

the precision of DRCI, we train DRCI with different DRL

loss weights and evaluate on four benchmarks. The weight ρ
(refer to Eq. 4) ranges from 0.0 to 1.0 in step of 0.1. Table

IV shows the precision of DRCI with different ρ on four

benchmarks. Note that ρ = 0.0 represents the baseline tracker

P-SiamFC++. It can be seen that when ρ is 0.1, DRCI achieves

the best precision on four benchmarks except UAV123@10fps.

Remarkably, significant improvements can be seen on UAVDT

and VisDrone2018 with ρ > 0.0, namely imposing the pro-

posed DRL loss, although the precision fluctuates on DTB70

and UAV123@10fps. Overall, the best precisions occur when

ρ is about 0.1. This result suggests that appropriately imposing
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the proposed DRL loss can help improve the precision of the

baseline tracker, justifying the effectiveness of the proposed

DRCL.

V. CONCLUSION

In this work, we are the first to explore learning dis-

criminative representation with contrastive instances for UAV

tracking, which not only requires no manual annotations

but also allows for developing and deploying a lightweight

model. The proposed DRCI is able to learn more effective

and more compact representations, and demonstrates state-

of-the-art performance on four UAV benchmarks in terms

of efficiency as well as tracking precision. We believe our

work will draw more attention to developing more effective

and more efficient lightweighted DL-based trackers for UAV

tracking.
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