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Abstract
The limited capacity to recognise faces under occlusions is a long‐standing problem that
presents a unique challenge for face recognition systems and even humans. The problem
regarding occlusion is less covered by research when compared to other challenges such
as pose variation, different expressions, etc. Nevertheless, occluded face recognition is
imperative to exploit the full potential of face recognition for real‐world applications. In
this article, the scope to occluded face recognition is restricted and a systematic cate-
gorisation that new as well as classic methods fit into is presented. First, the authors
explore the kind of the occlusion problem and the type of inherent difficulties that can
arise. As a part of this review, face detection under occlusion, a preliminary step in face
recognition. Second the authors analyse how the existing face recognition methods cope
with the occlusion problem and classify them into three categories, which are given as: 1)
occlusion robust feature extraction approaches, 2) occlusion aware face recognition ap-
proaches, and 3) occlusion recovery based face recognition approaches. Furthermore, the
motivations, innovations, pros and cons, and the performance of representative ap-
proaches for comparison are analyzed. Finally, future challenges and method trends of
occluded face recognition are thoroughly discussed.

1 | INTRODUCTION

Face recognition is a computer vision task that has been
extensively studied for several decades [1]. Compared with
other popular biometrics such as fingerprint, iris, palm, and
vein, the face has a significantly better potential to recognise
the identity in a non‐intrusive manner. Therefore, face recog-
nition is widely used in many application domains such as
surveillance, forensics, and border control. With the develop-
ment of deep learning techniques [2–10] and the publicly
available large‐scale face datasets [11–16], face recognition
performance has improved substantially [17, 18]. However,
face recognition systems still tend to perform far from satis-
factory when encountering challenges such as large‐pose
variation, varying illumination, low resolution, different facial
expressions, and occlusion. Generally, face images stored in a
gallery are of high quality and free from the above degrada-
tions, while probe faces are suffering from what can be seen as
a missing data problem due to these challenges. Consequently,
fewer facial parts are available for recognition, which induce a
mismatch between the features available in probe faces and
gallery faces.

Facial occlusion [19, 20] is considered one of the most
intractable problems because we do not have prior knowledge
about the occluded part, which can be anywhere and of any
size or shape in a face image. From a practical point of view, it
is not feasible to collect a large‐scale training dataset with all
possible occlusions in a realistic scenario to use deep learning
techniques. Therefore, the problem of face recognition under
occlusions remains a challenge. Facial occlusion occurs when
the subject wears accessories such as a scarf, a face mask,
glasses, a hat, etc., or when random objects are present in front
of the face. The recognition accuracy has been compromised in
some way because of the higher inter‐class similarity and the
more considerable intra‐class variations caused by occlusion.
Facial appearance changes substantially due to occlusion, as
illustrated in Figure 1.

Table 1 presents a categorisation of occlusion challenges in
different scenarios with their typical occlusion examples. Note
that the self‐occlusion problem due to pose variation in Table 1
is usually dealt with in pose correction and therefore not dis-
cussed here.

In most cases, occluded face recognition (OFR) involves
querying a gallery consisting of occlusion‐free faces using a
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probe image from an alternative test dataset of occluded faces.
Occluded faces rely on either the collection of real occlusions or
synthetic occlusions. We first break down OFR research sce-
narios in themost obviousway by the pairs of images considered.
Figure 2 offers an illustration of the five categories regarding
OFR testing scenarios. More specifically, five widely used testing
scenarios for OFR, ranging from most real to least real, are:

� Real occlusions: gallery images are mugshots free from
occlusion, while probe images are faces occluded by realistic
images such as sunglasses, or a scarf.

� Partial faces: gallery images are mugshots free from oc-
clusion, while test face images are partial faces; hence the
name partial face recognition is given by researchers.

� Synthetic occlusions: gallery images are faces in the wild
which are captured from uncontrolled scenarios, while
probe faces are obscured with synthetic occlusions to
simulate real occlusions.

� Occluding rectangle: gallery images are occlusion‐free
mugshots, while test face images are occluded with a rect-
angle such as white and black rectangles.

� Occluding unrelated images: gallery images are mugshots
free from occlusion, while test face images are occluded
with unrelated images such as a baboon, or a non‐square
image.

Approaches for recognising faces under occlusions can be
broadly classified into three categories (shown in Figure 3),
which are (1) occlusion robust feature extraction (ORFE), (2)
occlusion aware face recognition (OAFR) and (3) occlusion
recovery based face recognition (ORecFR). An OFR system
consists of three components, each corresponding to an
important design decision: cross‐occlusion strategy, feature
extraction, and comparison strategy. Of these components, the
second and third have analogues in general face recognition,
while cross‐occlusion strategy is unique to OFR.

� ORFE category searches for a feature space that is less
affected by facial occlusions. Generally, patch‐based engi-
neered and learning‐based features are used as the cross‐
occlusion strategy.

� OAFR category is explicitly aware where the occlusion is.
Generally, discarding occluded parts is applied as the cross‐
occlusion strategy. As a result, only visible face parts qualify
for face recognition (i.e. feature extraction, feature com-
parison). Furthermore, we classify partial face recognition

F I GURE 1 Examples of occluded face images from the MAFA dataset

TABLE 1 A categorisation of occlusion challenges

Occlusion scenario Examples

Facial accessories Eyeglasses, sunglasses, scarves, mask, hat, hair

External occlusions Occluded by hands and random objects

Limited field of view Partial faces

Self‐occlusions Non‐frontal pose

Extreme illumination Part of face highlighted

Artificial occlusions Random black rectangles

Random white rectangles

Random salt & pepper noise

Occluded
Faces

Real occlusions

O
cc
lu
di
ng

un
re
la
te
d
im

ag
es

Occlusion-free
Faces

AR [3]

FRGC-v2 [118]

LFW [59]

ORL [124]

Extend YaleB [38]

F I GURE 2 Different occluded face recognition testing scenarios
involved in occluded face recognition
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approaches as OAFR because they exclude occluded parts
from face recognition, assuming that visible parts are ready
in the beginning.

� ORecFR category intends to recover an occlusion‐free
face from the occluded face to meet the demands of con-
ventional face recognition systems. In other words, it takes
occlusion recovery as the cross‐occlusion strategy.

Numerous methods have been proposed to push the
frontier of face recognition research. Several comprehensive
surveys [21–23] have been published for face recognition un-
der occlusion. Of the existing works, the survey by Lahasan
et al. [23] on face recognition under occlusion challenges
presents a thorough overview of the approaches before 2017,
which is the most relevant to this article. However, there are at
least two reasons why a new survey on occluded face recog-
nition is needed. First, the explosive growth of face recognition
techniques these years has stimulated many innovative con-
tributions to handle occluded face recognition problems. The
increased number of publications over the last few years calls
for a new survey for occluded face recognition, including up‐
to‐date approaches, especially deep learning techniques. Sec-
ond, several large-scale occluded face datasets have become
publicly available in recent years. Without large‐scale training
data of occluded face images, deep learning models cannot
function well [24]. Recently, the MAFA dataset [25] is acces-
sible for occluded face detection, and the IJB‐C dataset [26] is
introduced as a general evaluation benchmark to include meta‐
information regarding the occlusion (i.e. occlusion location,
occlusion degree). Predictably, these datasets would encourage
occluded face recognition to develop faster. The proposed
survey provides a systematic and novel categorisation of
methods for occluded face recognition. Specifically, occluded
face detection techniques are briefly reviewed because an OFR
system requires the application of occluded face detection as
the first step. Moreover, newly published and innovative papers
addressing occlusion problems are thoroughly reviewed.
Despite that classic methods have been reviewed before, we
deem it still valuable to relate classic methods and new
methods in a new and high‐level framework. Even in times of
DNNs the older work is till valuable and illustrative for certain
approaches.

Finally, we represent comparative performance evaluations
in terms of occluded face detection and face recognition on
widely used datasets as well as newly developed large‐scale
datasets.

The remainder of the article is organised as follows:
occluded face detection techniques are introduced in Section 2.
Methods of occlusion robust feature extraction are described
and analysed in Section 3. We review occlusion‐aware face
recognition approaches in Section 4. Then Section 5 briefly
studies occlusion‐recovery face recognition methods. A per-
formance evaluation of the reviewed approaches is given in
Section 6. In section 7, we discuss future challenges to datasets
as well as to research. Finally, we draw an overall conclusion for
occluded face recognition.

2 | OCCLUDED FACE DETECTION

In this section, we break down occluded face detection into
two parts containing general face detection methods which can
be applied to detect occluded face, and occluded face detection
methods which are designed specifically to tackle the occlusion
issue in face detection. As for general face detection, we briefly
study relevant methods for the simplicity. We then elaborate
occluded face detection methods that are specifically designed
to detect occluded faces. One way to classify the methods can
be seen in Figure 4.

Occlusion Robust Feature Extrac�on

Occlusion Recovery

Occluded 
Face Detec�on

Sec�on 3 ORFE

Sec�on 4 OAFR

Sec�on 5 ORecFR

Sec�on 2 Occlusion Discard Face Recogni�onOcclusion Detect 

Par�al Face Detect Par�al Face Recogni�on

Face Recogni�on

Occluded Probe

F I GURE 3 The three categories of methods for
face recognition under occlusion challenges

Occluded face detec!on

A. General face detec!on B. Detec!ng occluded face

1) Rigid templates 

2) Deformable part models

Viola-Jones face detector 
and variants[146, 147]

LLE-CNNs[37], FAN[151]

2) Fusion decision on sub-regions

3) Adversarially use the occlusion info.

1) Locate visible facial segments  

3) Deep learning

FacenessNet and varaints [171, 173]

Grid loss[109], AOFD[18],
Hierarchical a"en!on[160]

R-CNN and variants[39,40,122], 
SSD[87], YOLO[120], 
Re!naFace[26], FANet[181]

DPM based[163]

F I GURE 4 Categorisation of methods used in occluded face detection
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2.1 | General face detection

Face detection generally intends to detect the face that is
captured in an unconstrained environment. It is challenging due
to the large‐pose variation, varying illumination, low resolution,
and occlusion etc. [27]. Approaches to general face detection can
roughly be classified into three categories, which are given as: (1)
Rigid templates‐based face detection, (2) Deformable part
models (DPM)‐based face detection, and (3) Deep convolu-
tional neural networks (DCNNs)‐based face detection.

The Viola‐Jones face detector and its variations [28, 29] are
typical in the rigid templates‐based category, which utilises
Haar‐like features and AdaBoost to train cascaded classifiers
and can achieve good performance with real‐time efficiency.
However, the performance of these methods can drop
dramatically when handling real‐world application [30]. In
contrast, DPM based face detection can achieve significantly
better performance at the cost of a higher computational
complexity [31] compared to Viola‐Jones face detector [28].

A third, most promising category of research is DCNNs
based face detection [32–42]. Some methods [33, 39, 40] join
face detection with face alignment to exploit their inherent
correlation to boost the performance. There are two major
branches of object detection framework: (i) region proposals
based CNN (i.e.two‐stage detectors), such as R‐CNN [43], fast
R‐CNN [44], faster R‐CNN [45]; (ii) region proposals free
CNN (i.e.,one‐stage detectors), such as the Single‐Shot Mul-
tibox Detector (SSD) [46], YOLO [47]. In short, two‐stage
detectors achieve higher performance but are time‐consuming.
One‐stage detectors have significant computational advantages
but compensate by less accurate detection results. Some
methods [34, 37, 41, 48] treat a face as a natural object and
adopt techniques from object detection in face detection. Most
recently, finding tiny faces has become popular in face detec-
tion and a superior performance was achieved [32, 36, 42, 49].

Recent years have witnessed promising results of exploring
DCNNs for face detection with the introduction of the
Widerface benchmark [38], which offers a wide pose variation,
significant scale difference (tiny face), expression variation,
make‐up, severe illumination, and occlusion. RetinaFace [50] is
a single‐stage pixel‐wise face localization method, which em-
ploys extra‐supervised and self‐supervised multi‐task learning
and achieves 92.5% on the Widerface hard test set. Feature
Agglomeration Networks (FANet) [48], a single‐stage face
detector, achieves the state‐of‐art performance on several face
detection benchmarks include the FDDB [51], the PASCAL
Face [52], and the Widerface benchmark [38]. To exploit
inherent multi‐scale features of a single convolutional neural
network, FANet introduced an Agglomeration Connection
module to enhance the context‐aware features and augmented
low‐level feature maps with a hierarchical structure so that it
can cope with scale variance in face detection effectively. Be-
sides, Hierarchical Loss is proposed to train FANet to become
stable and better in an end‐to‐end way. In short, methods
that achieve remarkable detection performance, for
example, on the Widerface dataset, also provide a solid
solution for occluded face detection.

2.2 | Detecting occluded face

Detecting partially occluded faces aims to locate the face re-
gion in a given image where occlusion is present. Handling
occlusion in face detection is challenging due to the unknown
location and the type of occlusions [53]. Recently, occluded
face detection is beginning to attract the attention of re-
searchers; therefore a few publications are reviewed. At the
same time, detecting occluded pedestrians is a long‐standing
research topic that has been intensively studied during the past
few decades. Therefore, many researchers borrow techniques
from pedestrian detection [54–56] to push the frontier of
occluded face detection by treating occlusion as the domi-
nating challenge during the detection. Most occluded face
detection methods report their performance on the MAFA
dataset [25] while general face detection methods do not,
which means it is not a level playing field for general face
detection and occluded face detection. Approaches to
detect partially occluded faces are roughly clustered as (1)
locating visible facial segments to estimate a full face; (2) fusing
the detection results obtained from face sub‐regions to miti-
gate the negative impact of occlusion; (3) using the occlusion
information to help face detection in an adversarial way.

2.2.1 | Locating visible facial segments to
estimate face

If visible parts of a face are known, then difficulties in face
detection due to occlusions are largely relieved. Observing that
facial attributes are closely related to facial parts, the attribute‐
aware CNNs method [57] intends to exploit the inherent
correlation between a facial attribute and visible facial parts.
Specifically, it discovers facial part responses and scores these
facial parts for face detection by the spatial structure and
arrangement. A set of attribute‐aware CNNs are trained with
specific part‐level facial attributes (e.g., mouth attributes such
as big lips, open mouth, smiling, wearing lipstick) to generate
facial response maps. Next, a scoring mechanism is proposed
to compute the degree of face likeliness by analysing their
spatial arrangement. Finally, face classification and bounding
box regression are jointly trained with the face proposals,
resulting in precise face locations. The results on FDDB [51],
PASCAL Face [52] and AFW [58] demonstrate that the pro-
posed method is capable of yielding a good performance. In
particular, they can achieve a high recall rate of 90.99% on
FDDB. In short, Ref. [57] is the first systematic study to
attempt face detection with severe occlusion without using
realistic occluded faces for training.

More recently, the extension faceness‐net [59] improves the
robustness of feature representations by involving a more
effective design of CNN. As a result, it has achieved compel-
ling results on the Widerface dataset [38], which is challenging
in terms of severe occlusion and unconstrained pose variations.
However, it requires the use of labelled attributes of facial data
to train attribute‐aware CNN, that impairs its practical use in
some way.
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2.2.2 | Fusing detection results obtained from
face sub‐regions

In paper [60], a facial segment based face detection technique is
proposed for mobile phone authentication with faces captured
from the front‐facing camera. The detectors are AdaBoost
cascade classifiers trained with a local binary pattern (LBP)
representation of face images. They train 14 segments‐based
face detectors to help cluster segments in order to estimate a
full face or partially visible face. As a result, this method could
achieve excellent performance on the Active Authentication
Dataset (AA‐01) [61, 62]. However, the use of simple archi-
tecture increases speed by compromising detection accuracy.

The introduction of MAFA [25] offers plenty of faces
wearing various masks, which contributes significantly to the
occluded face detection, especially of masked faces. Based on
this dataset, an LLE‐CNNs [25] is proposed to benchmark the
performance of masked face detection on the MAFA dataset.
They extract candidate face regions with high‐dimensional
descriptors by pre‐trained CNNs and employ locally linear
embedding (LLE) to turn them into similarity‐based de-
scriptors. Finally, they jointly train the classification and
regression tasks with CNNs to identify candidate facial regions
and refine their position.

To avoid high false positives due to masks and sunglasses, a
face attention network (FAN) detector [63] is proposed to
highlight the features from the face region. More specifically, the
FAN detector integrates an anchor‐level attention mechanism
into a single‐stage object detector like Feature Pyramid Net-
works [64]. The attention supervision information is obtained
by filling the ground‐truth box and is associated with the
ground‐truth faces which match the anchors at the current layer.
The attention maps are first fed into an exponential operation
and then combined with feature maps. As a result, the method is
capable of achieving impressive results on the Widerface [38]
with an 88.5% average precision on the hard subset as well as on
an 88.3% average precision on MAFA [25] dataset.

2.2.3 | Occlusion information adversarially used
for detection

Apart from selecting the visible facial parts and fusing results
obtained from face sub‐regions, it is a third way to minimise
the adverse effects of face detection due to occlusions. One
promising approach is to use a novel grid loss [65], which has
been incorporated into the convolutional neural network to
handle partial occlusion in face detection. It is based on the
observation that partial occlusions would confuse a subset of
detectors, whereas the remaining ones can still make correct
predictions. To this end, this work considers occluded face
detection as a particular single‐class object detection problem,
inspired by other works on object detection [35, 66–68].
Furthermore, the proposed grid loss minimises the error rate
on face sub‐blocks independently rather than over the whole
face to mitigate the adverse effects of partial occlusions and to
observe improved face detection accuracy.

Using the occluded area as an auxiliary rather than a hin-
drance is a feasible solution to help face detection adversely.
Adversarial occlusion‐aware face detection (AOFD) [69] is
proposed to detect occluded faces and segment the occlusion
area simultaneously. They integrate a masking strategy into
AOFD to mimic different occlusion situations. More specif-
ically, a mask generator is designed to mask the distinctive part
of a face in a training set, forcing the detector to learn what is
possibly a face in an adversarial way. Besides, an occlusion
segmentation branch is introduced to help detect incomplete
faces. The proposed multitask training method showed supe-
rior performance on general as well as masked face detection
benchmarks. To cope with different poses, scales, illumination,
and occlusions, Wu et al. [70] introduce a hierarchical attention
mechanism, applying long short‐term memory (LSTM) to
predict face‐specific attention. In this way, it can further model
relations between the local parts and adjust their contribution
to face detection. The proposed method achieves promising
performance compared with Faster R‐CNN [45].

3 | OCCLUSION ROBUST FEATURE
EXTRACTION

If the extracted features are reasonably robust to the occlusion,
then difficulties in face recognition due to occlusion are
relieved. The aim is to extract features that are less affected by
occlusions (outliers) while preserving the discriminative capa-
bility. We group the approaches into engineered features and
learning‐based features. The former generally extract handcraft
features from explicitly defined facial regions, which do not
require optimization or a learning stage. The latter extract
features by using learning‐based methods such as linear sub-
space methods, sparse representation classification, or
nonlinear deep learning techniques. One way to classify the
methods can be seen in Figure 5.

3.1 | Patch‐based engineered features

Facial descriptors obtained in an engineered way are rather
efficient because they can: (i) be easily extracted from the raw
face images; (ii) discriminate different individuals while toler-
ating large variability in facial appearances to some extent; (iii)
lie in a low feature space so as to avoid a computationally
expensive classifier. Generally, engineered features (i.e., hand-
craft features) are extracted from facial patches and then
concatenated to represent a face. Therefore, a fusion strategy
can be imported to reduce the adverse effects of occluded
patches in some way. Alternatively, patch‐based matching can
be used for feature selection to preserve occlusion‐free
discriminative information.

These methods in general require precise registration such
as alignment based on eye coordinates for frontal faces and
integrate the decisions from local patches to obtain a final
decision for face recognition. This is problematic because these
methods rely on robust face alignment under occlusion, but the
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eyes are likely to be occluded. In short, these approaches are
not realistic for application since most often the face images
need to be aligned well to facilitate feature extraction of
meaningful facial structure.

3.1.1 | Handcraft features

Local Binary Patterns (LBP) [71, 72] is used to derive a novel
and efficient facial image representation and has been widely
used in various applications. LBP and variants [73, 74] retain
popularity and succeed so far in producing good results in
biometrics, especially face recognition. The main idea is to
divide the face image into multiple regions, from which to
extract LBP feature distributions independently. These de-
scriptors are then concatenated to form an enhanced global
descriptor of the face. For distance measurement between two
faces, weighted Chi square distance is applied, accounting for
some facial features being more important in human face
recognition than others. The Scale Invariant Feature Transform
(SIFT) descriptor [75] is popular in object recognition and
baseline matching and can also be applied to face recognition
[76]. SIFT is largely invariant to changes in scale, translation,
rotation, and is also less affected by illumination changes,
affine or 3D projection. Similarly to SIFT, the Histograms of
Oriented Gradient (HOG) descriptor [77] has been proposed
to handle human detection and has been extended to cope with
object detection as well as visual recognition. The main idea is
to characterise local object appearance and shape with the
distribution of local integrity gradients. After applying a dense
(in fact, overlapping) grid of HOG descriptors to the detection
window, the descriptors are combined to suit the further
classifier. Contrary to the integrity oriented methods, Gabor
filters and other frequency oriented approaches construct the
face feature from filter responses. Generally, the filter re-
sponses computed for various frequencies and orientations
from a single or multiple spatial locations are combined to
form the Gabor feature [78]. Phase information instead of
magnitude information from Gabor features contains
discrimination and is thus widely used for recognition [79].
Features based on Gabor filters are versatile. By post‐

processing they can be converted, for example, to binary de-
scriptors of texture similar to LBPs. Ref. [80] proposes KLD‐
LGBP, in which Kullback‐Leibler Divergence (KLD) is intro-
duced to measure the distance between the local Gabor binary
patterns (LGBP) feature [81] of the local region of test images
and that of the unoccluded local region of reference faces.
They define the probability of occlusions of that area as the
distance between two distributions of local regions and further
use it as the weight of the local region for the final feature
matching. The main drawback of this method is the high
dimensionality of LGBP features, which are the combination
of Gabor transform, LBP, and a local region histogram on local
face regions.

3.1.2 | Patch‐based matching

Besides representation, the distance metric also plays an
important role. Elastic and partial matching schemes bring in a
lot of flexibility when handling challenges in face recognition.
Elastic Bunch Graph Matching (EBGM) [82] uses a graph to
represent a face, and each node of the graph corresponding to
the Gabor jets extracted from facial landmarks. The matching
method is used to calculate the distance between corre-
sponding representations of two faces. To take an advantage of
elastic and partial matching, Ref. [83] proposes a robust
matching metric to match Difference of Gaussian (DoG) filter
descriptor of a facial part against its spatial neighbourhood in
the other faces and select the minimal distance for face
recognition. Specifically, they extract N local descriptors from
densely overlapped image patches. During the matching, each
descriptor in one face is picked up to match its spatial neigh-
bourhood descriptors and then the minimal distance is
selected, which is effective in reducing the adverse effects of
occlusion. A random sampling patch‐based method [84] has
been proposed to use all face patches equally to reduce the
effects of occlusion. It trains multiple support vector machine
(SVM) classifiers with selected patches at random. Finally, the
results from each classifier are combined to enhance the
recognition accuracy. Similarly to elastic bunch graph matching
[82],the dynamic graph representation [85] is proposed to build
feature graphs based on node representations. Each node
corresponds to certain regions of the face image and the edge
between nodes represents the spatial relationship between two
regions. The dynamic graph representation can enable elastic
and partial matching, where each node in one face image is
matched with adjacent nodes in the other face image for face
recognition, which brings in robustness to occlusion especially
when encountering partially occluded biometrics.

3.2 | Learning‐based features

Compared with engineered features, learnt features are more
flexible when various occlusion types at different locations are
present. Features learnt from training data can be effective and
have potentially high discriminative power for face recognition.

Occlusion robust feature extrac�on

A. Patch-based engineered features B. Learning-based features

1) Handcra! features

2) Patch-based matching

LBP[1], SIFT[90], 
HOG[23], Gabor[199],
KLD-LGBP[186]

EBGM[157], 
Spa"al neighborhood[58],
Random patch[12]

2) Sta"s"cal learning

3) Sparse representa"on classifier

4) Deep learning

1) Subspace learning
PCA[143], LDA[8]

SOM[139]

SRC[158], GRRC[169], RCSLBP[193]

Data augmenta"on[92], DDRC[11]

F I GURE 5 Categorisation of methods used in occlusion robust
feature extraction approaches
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Unlike regular images, face images share common constraints,
such as containing a smooth surface and regular texture. Face
images are in fact confined to a face subspace. Therefore,
subspace learning methods have been successfully applied to
learn a subspace that can preserve variations of face manifolds
necessary to discriminate among individuals. Taking the oc-
clusion challenge as a major concern, it is natural to apply
statistical methods on face patches allowing the fact that not all
types of occlusion have the same probability of occurring.
Sparse representation classifier methods, which fully explore
the discriminative power of sparse representation and repre-
sent a face as a weighted combination of training samples, have
been the mainstream approach to handle various challenges in
face recognition for a long time. The last few years have wit-
nessed a great success of deep learning techniques [86],
especially deep convolutional neural networks (DCNN) for
uncontrolled face recognition applications.

3.2.1 | Subspace learning

Approaches such as the Principal component analysis (PCA)
[87] and the Linear Discriminant Analysis (LDA) [88] are the
two most representative methods in learning the subspace for
feature extraction. Eigenface [87] uses PCA to learn the most
representative subspace from training face images. Fisherface
[88] uses LDA to explore a discriminant subspace that differ-
entiates faces of different individuals by incorporating the class
labels of faces images. One limitation for these appearance‐
based methods is that proper alignment specifically based on
the eye location is required. Modular PCA [89] builds multiple
eigen spaces (eigenfeatures) in the regions of facial compo-
nents (e.g. eyes, nose, and mouth) to achieve variance tolerance,
especially for face variances. Ref. [90] uses an influence func-
tion technique to develop robust subspace learning for a va-
riety of linear models within a continuous optimization
framework. Ref. [91] uses the property of PCA to detect
‘outliers’” and occlusions, and calculates the coefficients using
the rest of the pixels. Inspired by robust PCA [91], a new
approach combining discriminative power and reconstructive
property has been proposed by Fidler et al. [92], which can
achieve good classification results and have the construction
abilities to detect outliers (occlusions). Specifically, object
recognition and face recognition applications are used to es-
timate the LDA coefficients in a robust manner. Besides, ob-
jects' orientation application, a regression task, is introduced to
robustly estimate CCA coefficients. The authors of Ref. [93]
propose independent component analysis (ICA) to use locally
salient information from important facial parts for face
recognition. This part‐based representation method could
achieve better performance in case of partial occlusions and
local distortions than PCA and LDA. Unlike linear subspace
methods, nonlinear subspace methods use nonlinear trans-
forms to convert a face image into a discriminative feature
vector, which may attain highly accurate recognition in prac-
tical scenarios. The authors of Ref. [94] propose kernel cor-
relation feature analysis (KCFA) on facial regions, that is,

eye‐region, nose‐region, and mouth‐region to cope with partial
face recognition. The proposed KCFA for feature extraction
outperforms the linear approaches PCA [87], LDA [88] and
variants of kernel methods [95, 96]. The authors of Ref. [97]
propose the confidence weighted subspace method to weigh
image pixels according to a measure, which quantifies the
confidence for the validity of each image pixel. As a result, this
method reduces the impact of occluded pixels on the subspace
representation of the given face image.

3.2.2 | Statistical learning

In real‐world applications, not all types of occlusions have the
same probability of occurring; for example, a scarf and sun-
glasses often have a higher probability of occurrence compared
with others. Hence, it is natural to apply statistical learning on
face patches to account for their occlusion possibility. One
early work in this direction is Ref. [98], which takes a proba-
bilistic approach, that is, a mixture of Gaussians to compensate
for partially occluded faces. Specifically, they analyse local re-
gions divided from a face in isolation and apply the probabi-
listic approach to find the best match so that the recognition
system is less sensitive to occlusion. Ref. [99] extends the work
by representing the face subspace with self‐organising maps
(SOM). It presents the similarity relationship of the subblocks
in the input space in the SOM topological space. Furthermore,
they use the soft k nearest neighbour ensemble classifier to
efficiently capture the similarity relationship obtained by SOM
projections, which in turn improves the whole system's
robustness. However, this method assumes knowledge of the
occluded parts in advance. Since partial occlusion affects only
specific local features, Ref. [100] proposes a local Gaussian
kernel for feature extraction and trains the SVM using the
summation of local kernels as combine features. However, it is
suboptimal to use the same size local kernel rather than select
the appropriate size of the local kernel for local feature
extraction. In Ref. [101], a non‐metric partial similarity measure
based on local features is introduced to capture the prominent
partial similarity among face images while excluding the un-
reliable and unimportant features.

In the article [102], a face recognition method is proposed
that takes partial occlusions into account by using statistical
learning of local features. To this end, they estimated the
probability density of the SIFT feature descriptors observed in
training images based on a simple Gaussian model. In the
classification stage, the estimated probability density is used to
measure the importance of each local feature of test images by
defining a weighted distance measure between two images.
Based on this work, they extended the statistical learning based
on local features to a general framework [103], which combines
the learnt weight of local features and feature‐based similarity
to define the distance measurement. However, feature extrac-
tion from the local region cannot code the spatial information
of faces. Besides, the unreliable features from the occluded area
are also integrated into the final representation, which will
reduce the performance. McLaughlin et al. [104] try to solve
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random partial occlusion in test images using the largest
matching areas at each point on the face. They assume that the
occluded test image region can be modelled by an unseen‐data
likelihood with a low posterior probability. More specifically,
they de‐emphasize the local facial area with low posterior
probabilities from the overall score for each face and select
only reliable areas for recognition, which results in improved
robustness to partial occlusion.

3.2.3 | Sparse representation classifier

Apart from these statistical learning methods, several algo-
rithms use sparse representation classifiers (SRC) to tackle the
occlusion in face recognition. Ever since its introduction
[105], SRC attracts increasing attention from researchers. This
method explores the discriminative power of sparse repre-
sentation of a test face. It uses a linear combination of
training samples plus sparse errors to account for occlusion
or corruption as its representation. Based on their former
work [106], Yang et al. [107] propose a Gabor feature based
Robust Representation and Classification (GRRC) scheme.
They use Gabor features instead of pixel values to represent
face images, which can increase the ability to discriminate
identity. Moreover, the use of a compact Gabor occlusion
dictionary requires less expensive computation to code the
occlusion portions compared with that of the original SRC.
To investigate the effectiveness of the proposed method, they
conduct extensive experiments to recognise faces with block
occlusions as well as real occlusions. A subset of the AR
database was used in this experiment. It consists of 799
images (about eight samples per subject) of non‐occluded
frontal views with various facial expressions for training. The
sunglasses test set contains 100 images with the subject
wearing sunglasses (with a neural expression), and the scarves
test set contains 100 images with the subject wearing a scarf
(with a neural expression). The proposed GRRC achieves
93.0% recognition accuracy on sunglasses and 79% accuracy
on scarves, which outperforms the original SRC by 5% and
20%, respectively. In paper [108], artificial occlusions are
included to construct training data for training sparse and
dense hybrid representation framework. The results show that
artificially introduced occlusions are important to obtain
discriminative features. Structured occlusion coding (SOC)
[109] is proposed to employ an occlusion‐appended dictio-
nary to simultaneously separate the occlusion and classify the
face. In this case, with the use of corresponding parts of the
dictionary, face and occlusion can be represented respectively,
making it possible to handle large occlusion, like a scarf. In
paper [110], efficient locality‐constrained occlusion coding
(ELOC) is proposed to greatly reduce the running time
without sacrificing too much accuracy, inspired by the
observation that it is possible to estimate the occlusion using
identity‐unrelated samples.

Recently, another work [111] attempts face recognition
with single sample per person and intends to achieve
robustness and effectiveness for complex facial variations

such as occlusions. It proposes a joint and collaborative
representation with local adaptive convolution feature (ACF),
containing local high‐level features from local regular regions.
The joint and collaborative representation framework requires
ACFs extracted from different local areas to have similar
coefficients regarding a representation dictionary. Ref. [112]
proposes to learn a robust and discriminative low‐rank rep-
resentation (RDLRR) for optimal classification, which aiming
to prepare the learnt representations optimally for classifica-
tion as well as to capture the global structure of data and the
holistic structure of each occlusion induced error image. The
results demonstrate that the method can yield a better per-
formance in case of illumination changes, real occlusion as
well as block occlusion. Ref. [113] combines centre‐symmetric
local binary patterns (CSLBP) with enhanced centre‐sym-
metric local binary patterns (ECSLBP) to build the SRC
dictionary for occluded face recognition. In Ref. [114],
discriminative multi‐scale sparse coding (DMSC) is proposed
to address single‐sample face recognition with different kinds
of occlusion. More specifically, it learns the auxiliary dictio-
nary to model the possible occlusion variations from external
data based on PCA and proposes a multi‐scale error mea-
surement strategy to detect and disregard outlier pixels due to
occlusion. Ref [115] proposes a hierarchical sparse and low‐
rank regression model and uses features based on image
gradient direction, leading to a weak low‐rankness optimiza-
tion problem. The model is suited for occluded face recog-
nition and yields better recognition accuracy. In another
work, NNAODL (nuclear norm based adapted occlusion
dictionary learning) [116] has been proposed to construct
corrupted regions and non‐corrupted regions for occluded
face recognition. The same occlusion parts in training images
are used to construct the occlusions while normal training
images are used to reconstruct non‐occlusion regions, leading
to improved computing efficiency. To cope with occluded
face recognition with limited training samples, the authors of
Ref. [117] propose a structural element feature extraction
method to capture the local and contextual information
inspired by the human optic nerve characteristics for face
recognition. Besides, an adaptive fusion method is proposed
to use multiple features consisting of a structural element
feature, and a connected‐granule labelling feature. It applies
Reinforced Centrosymmetric Local Binary Pattern (RCSLBP)
to better handle the robustness to the occlusion. Finally, few‐
shot sparse representation learning is applied for the few‐shot
occluded face recognition.

3.2.4 | Deep learning

Face representation obtained by DCNN is vastly superior to
other learning‐based methods in discriminative power, owing
to the use of massive training sets [86]. Face verification
performance has been boosted due to advanced deep CNN
architectures [2, 3, 6–8] and the development of loss functions
[4, 5, 9, 10, 118–121]. From a practical point of view, we can
obtain occlusion‐robust face representation if a massive
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training dataset is provided to contain sufficient occluded faces
for a deep network to learn to handle occlusions [122].
However, it is tough to collect such a dataset. Data augmen-
tation seems to be a plausible solution to obtain a large
number of occluded faces. Training with augmented occluded
faces ensures the features are extracted more locally and
equally [123]. Lv et al. [124] synthesise occluded faces with
various hairstyles and glasses for data augmentation to enlarge
the training dataset, which alleviates the impact of occlusions.
Specifically, 87 common hairstyle templates with various bangs
and 100 glasses templates are collected to synthesise training
face images with different hairstyles and face images with
different glasses, to enable the CNN model is robust to
various hairstyles and glasses. The method indeed relieves the
data deficiency problem and results in improved performance.
However, its use is limited to handling sunglasses and hair in
recognition and does not solve the occlusion problem in
general. In Ref [125], instead of using synthetic occluded faces
directly, they first identify the importance of face regions in an
occlusion sensitivity experiment and then train a CNN with
identified face regions covered to reduce the model's reliance
on these regions. Specifically, they propose to augment the
training set with face images with occlusions located in high‐
effect regions (the central part of the face) more frequently
than in low effect regions (the outer parts of the face). This
forces the model to learn more discriminative features from
the outer parts of the face, resulting in less degradation when
the central part is occluded. However, pre‐defined occlusions
may cause performance degradation when dealing with face
images with an occlusion that is not of the same size. Cen
et al. [126] propose a DDRC (deep dictionary representation
based classification) scheme to alleviate the occlusion effect in
face recognition, where the dictionary is used to linearly code
the deep features that are extracted from a convolutional
neural network. The dictionary is composed of deep features
of the training samples and an auxiliary dictionary associated
with the occlusion patterns of the testing face samples.
However, the proposed DDRC assumes that the occlusion
pattern of the test faces is included in the auxiliary dictionary,
which limits its use.

4 | OCCLUSION AWARE FACE
RECOGNITION

If only visible facial parts are used for recognition, then the
occlusion problem is mitigated to some extent. These ap-
proaches that explicitly exclude the occlusion area are called
occlusion aware face recognition (OAFR). There are two
groups of methods that constitute OAFR. One is occlusion
detection based face recognition, which detects the occlusions
first and then obtains a representation from the non‐occluded
parts only. The other one is partial face recognition, which
assumes that a partial face is available and aims to use a partial
face for recognition. Occlusion detection is ignored during
partial face recognition. A categorisation of occlusion aware
face recognition is shown in Figure 6.

4.1 | Occlusion detection based face
recognition

To explicitly make use of facial parts for face recognition,
some methods explicitly detect the occlusion and perform
face recognition based on their results. The other techniques
obtain visible facial parts for face recognition based on the
prior knowledge of occlusion, which is called visible part
selection.

4.1.1 | Occlusion detection

An intuitive idea to deal with occlusions in face recognition
is to detect the occlusions first and then recognise the face
based on unoccluded facial parts. Methods use predefined
occlusion types as a substitute for arbitrary occlusion in
different locations to simplify the occlusion challenge.
Usually, scarves and sunglasses are used as representative
occlusions because of their high probability of appearance in
the real world. Based on this idea, Ref. [127] introduces a 1‐
NN (nearest neighbour) threshold classifier to detect the
occluded face region in a PCA subspace learnt from training
data of occlusion‐free patches. Then they apply the selective
local non‐negative matrix factorization method to select
features corresponding to occlusion‐free regions for recog-
nition. Some early works [128, 129] employ a binary clas-
sifier to search for the occluded area and incorporate only
the unoccluded parts for comparison. Specifically, they first
divide the face into multiple non‐overlapping regions and
then train an SVM classifier to identify whether the facial
patch is occluded or not. By excluding occluded regions,
improved overall recognition accuracy is observed. However,
the performance is far from satisfactory and very sensitive
to the training dataset. Min et al. [130] propose to first
analyse the presence of potential occlusion on a face and
then perform face recognition on the nonoccluded facial
regions based on local Gabor binary pattern histogram se-
quences (LGBPHS) [81]. Specifically, an occlusion detection
and segmentation module is proposed to identify potential

Occlusion aware face recogni�on

A. Occlusion detec�on based
face recogni�on

B. Par�al face recogni�on

1) Occlusion detec�on 

2) Visible part selec�on

Patch based SVM[19],
Mul�task CNN[161]

MaskNet[148], 
PDSN[132]

1) Feature extrac�on component

2) Comparison component

MDSCNN[51]

Mul�ple classifier system

Learning classifier

ERBF[47], Lophoscopic PCA[140]

MKD[82], 
Dynamic feature[49]

NMF exten�ons

Deep learning

NMF[73], RDNDL[111]

F I GURE 6 Categorisation of methods classification used in occlusion
aware face recognition approaches
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occluded facial components and generate an occlusion mask.
During recognition, they propose a selective LGBPHS
which selects features from the nonoccluded region only.
Ref. [131] proposes to utilise compressed sensing for oc-
clusion detection by using occluded and occlusion‐free faces
of the same identity. For the recognition process, discrimi-
native information is extracted by excluding the occluded
areas detected.

Since occlusions can corrupt the features of an entire
image in some way, deep learning techniques are developed
to alleviate the problem by producing a better representation.
Ref. [132] designs a convolutional neural network to detect
the occlusion in a multitask setting. More specifically, there
are four region‐specific tasks for occlusion detection, and
each aims to predict the occlusion probability of the specific
component: left eye, right eye, nose, and mouth. However,
predicting only predefined occlusions limits flexibility, and
inaccuracy of occlusion detection can, in return, harm the
recognition performance.

4.1.2 | Visible part selection

some works select visible facial parts for recognition and skip
occlusion detection by assuming the prior knowledge of oc-
clusion. Ref. [133] compares several subspace‐based methods
including PCA, non‐negative matrix factorization (NMF) [134],
local NMF [135] and spatially confined NMF [136] and uses
the partial information available for face recognition. During
face recognition, the eye region is selected when people are
wearing masks or veils, and the bottom region is used when
people are wearing glasses. This method has a deficiency in
flexibility use because well‐aligned predefined subregions are
hard to obtain in the real scenario. A reference [137] in this
direction extends NMF to include adaptive occlusion estima-
tion based on the reconstruction errors. Low‐dimensional
representations are learnt to ensure that features of the same
class are close to that of the mean class centre. This method
does not require prior knowledge of occlusions and can handle
large continuous occlusions.

In reference [138], a proposed MaskNet is added to the
middle layer of CNNmodels, aiming to learn image features with
high fidelity and ignore those distorted byocclusions.MaskNet is
defined as a shallow convolutional network, which is expected to
assign lower weights to hidden units activated by the occluded
facial areas. Recently, Song et al. [139] propose a pairwise dif-
ferential siamese network (PDSN) to build the correspondence
between the occluded facial block and the corrupted feature el-
ements with amask learning strategy. The results show improved
performance on synthesised and realistic occluded face datasets.

4.2 | Partial face recognition

It is worth mentioning that we classify partial face recognition
as occlusion aware methods because partial face recognition
skips the occlusion detection phase and focuses on face

recognition when arbitrary patches are available, which can be
seen as implicit occlusion awareness. Partial faces frequently
appear in unconstrained scenarios, with images captured by
surveillance cameras or handheld devices (e.g., mobile phones)
in particular. To the best of our knowledge, research for
partial face detection has so far been ignored in literature
reviews. It is essential to search for the semantic correspon-
dence between the partial face (arbitrary patch) and the entire
gallery face since it is meaningless to compare the features of
different semantic facial parts. The semantic correspondence
can be completed either in the feature extraction phase to
extract invariant and discriminative face features, or in the
comparison phase to construct a robust face classifier. Feature
extraction and comparison methods can be developed to
address the partial face recognition problem. Therefore, we
categorise the methods as feature‐aware and comparison‐
aware methods.

4.2.1 | Feature extraction component

As for feature‐aware methods, Multiscale Double Supervision
Convolutional Neural Network (MDSCNN) [140] is pro-
posed to have multiple networks trained with facial patches
of different scales for feature extraction. Multiscale patches
are cropped from the whole face and aligned based on their
eye‐corners. Each network is training with face patches of a
scale. The weights of multiple networks are combined learnt
to generate final recognition accuracy. Even though this
method can yield good feature representations, it is trou-
blesome to train 55 different Double Supervision Convolu-
tional Neural Networks (DSCNNs) according to different
scaled patches. It is time‐consuming in practice because
window sliding is needed to generate multiscale patches for
recognition.

4.2.2 | Comparison component

Comparison‐aware methods facilitate the semantic corre-
spondence in the comparison phase of face recognition.
Among the comparison based approaches, the multiple clas-
sifier systems use a voting mechanism to tolerate the
misalignment problem to an extent. In this regard, Gutta et al.
[141] present an Ensemble of Radial Basis Function (ERBF)
Networks consisting of nine RBF components, and each of
which is determined according to the number of clusters and
overlap factors. A verification decision is based on the output
generated by the RBFs. In reference [142], they propose the
Lophoscopic PCA method to recognise faces in the absence of
a part of the relevant information. For this purpose, masks
(black rectangles) that cover specific regions of the face,
including left eye, right eye, both eyes, nose, mouth, and no
mask are introduced to compute different subspaces. They
learn the weights for each subspace during training. When
classifying the subject, weights regarding each face subspace
are considered and combined for recognition. These methods
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are not entirely satisfactory but need improvement, particularly
in terms of their recognition rate.

Alternatively, a learning‐based classifier compensates for
the difficulty in the alignment of partial face recognition. Ref.
[143] conducts the first systematic study to recognise an arbi-
trary patch of a face image without preliminary requirement on
face alignment, which is regarded as a milestone in the field of
partial face recognition. The proposed method employs the
multi‐keypoint descriptors (MKD) to represent a holistic or
partial face with a variable length. Descriptors from a large
gallery construct the dictionary, making it possible to sparsely
represent the descriptors of the partial probe image and infer
the identity of the probe accordingly. However, SRC requires a
sufficient number of faces to cover all possible variations of a
person, which hinders the realization of a practical application.

Even though most learning‐based classifier papers are SRC
based, there is a small group that develops similarity measures
to address the partial face recognition problem. Ref. [144]
utilises the instance‐to‐class distance to address the partial face
recognition with scale‐invariant feature transform (SIFT) de-
scriptors. The similarity between each probe patch and gallery
image is obtained by comparing a set of local descriptors of
one probe image to the nearest neighbour descriptors of all
gallery images with the sparse constraint. As an improvement,
Ref. [145, 146] consider partial face recognition as a feature set
matching problem, where they explicitly use geometric features
and textural features for simultaneous matching. Robust point
set matching (RPSM) [146] considers both geometric distri-
bution consistency and textural similarity. Moreover, a
constraint on the affine transformation is applied to prevent
unrealistic face warping. However, these methods would fail to
work if face keypoints are unavailable due to occlusions.

Recently, there is a trend to combine the deep learning and
SRC methods to tackle the partial face recognition [147, 148].
Dynamic feature learning [147] combines a fully convolutional
network (FCN) with sparse representation classification (SRC)
for partial face recognition. The sliding window matching
proposed in paper [149] searches for the most similar gallery
part by sliding the window of the same size as the partial probe.
The combination of sliding window matching based on FCN
and SRC brings a promising performance. As an improved
version, Ref. [148] uses multi‐scale representations in dynamic
feature learning, which increase the ability to tolerate the
misalignment between partial probe patches and the gallery
face.

5 | OCCLUSION RECOVERY BASED
FACE RECOGNITION

Apart from addressing the occlusion problem in feature space,
one intuitive idea takes occluded face recovery as a substitution
to solve the occlusion in image space. Occlusion recovery
methods recover a whole face from the occluded face, which
allows the direct application of conventional face recognition
algorithms. Existing occlusion recovery methods for face
recognition use (i) reconstruction based techniques for face

recognition, or (ii) inpainting techniques, which treat the
occluded face as an image repairing problem. A possible way to
classify the methods can be seen in Figure 7.

5.1 | Reconstruction based face recognition

Image‐based two‐dimensional reconstructions carefully study
the relationship between occluded faces and occlusion‐free
faces. The reconstruction techniques are classified as linear
reconstruction, sparse representation classifier (dictionary
learning), and deep learning techniques.

5.1.1 | Linear reconstruction

As for reconstruction techniques, Ref. [150] utilises PCA
reconstruction and recursive error compensation to remove
the eye occlusions caused by glasses. It combines a Markov
Random Field model with a parse representation of occluded
faces to improve the reconstruction of corrupted facial regions.
There are many variants [90–92] employing PCA to detect
outliers or occlusion and then reconstruct occlusion‐free face
images. Ref. [151] estimates an occluded test image as a linear
combination of training samples of all classes, which allows
having occlusions in training and testing sets. Distinct facial
areas are weighted differently so that only non‐occluded facial
parts are used for reconstruction.

5.1.2 | Sparse representation classifier

The sparse representation classifier [105] is considered to be
the pioneering work on occlusion robust face recognition.
This method explores the discriminative power of sparse
representation of a test face. It uses a linear combination of
training samples plus sparse errors accounting for occlusions
or corruption as its representation. To better tackle the
occlusion, the SRC introduces an identity matrix as an oc-
clusion dictionary on the assumption that the occlusion
has a sparse representation in this dictionary. Ref. [152]

Occlusion recovery based face recogni�on

A. Reconstruc�on based
 face recogni�on

B. Inpain�ng

1) Linear reconstruc�on

2) Sparse representa�on classifier

3) Deep learning

Linear combina�on[63]

SRC[158], SSRC[112]

Double Channel Autoencoders[20],
LSTM-Autoencoders[189]

1) Non-blind inpain�ng

2) Deep learning for blind inpain�ng

FW-PCA[65],
Exemplar-based texture 
synthesis[21]

Denoising autoencoder[162],
Context Encoders[117], VAE[67], 
GAN[41], ERGAN[55], ID-GAN[36]

F I GURE 7 Categorisation of methods used in occlusion recovery
based face recognition approaches
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improves sparse representation by including prior knowledge
of pixel error distribution. In reference [153], they design a
graph model‐based face completion system for partially
occluded face reparation. They leverage image‐based data
mining to find the best‐matched patch to guide occluded
face synthesis from the images, derived from the selection
of sparse representation classification (SRC). The final face
completion proceeds in the graph‐based domain with the
help of graph Laplace.

Similarly, Ref. [154] proposes a reconstruction approach
consisting of occlusion detection and face reconstruction.
First, the downsampled SRC is used to locate all possible oc-
clusions in the downsampled images, which has a low
computing complexity compared to SRC based on original face
images. Second, all discovered face pixels are imported into an
overdetermined equation system to reconstruct an intact face.
The authors in Ref. [155] propose scheme structured sparse
error coding (SSEC) for occluded face recognition by combing
structure information of error support and error distribution.
Specifically, a morphological graph model is proposed to
integrate the morphological information of occlusion into
graph in order to explore the geometrical structural of the
occlusion error. An exponential probabilistic model is further
proposed to study the error distribution under different error
metrics. An innovative solution for the occlusion challenge is
presented by structured sparse representation based classifi-
cation (SSRC) [156] to learn an occlusion dictionary. The
regularisation term of mutual incoherence forces the resulting
occlusion dictionary to be independent of the training samples.
This method effectively decomposes the occluded face image
into a sparse linear combination of the training sample dic-
tionary and the occlusion dictionary. The recognition can be
executed on the recovered occlusion‐free face images. Never-
theless, this method requires retraining of the model to handle
the different occlusions.

In reference [157], a new criterion to compute modular
weight‐based SRC is proposed to address the problem of
occluded face recognition. They partition a face into small
modules and learn the weight function according to the Fisher
rate. The modular weight is used to lessen the effect of
modules with low discriminant and to detect the occlusion
module. More recently, Ref. [158] proposes a robust repre-
sentation to model contiguous block occlusions based on two
characteristics. The first characteristic introduces a tailored
potential loss function to fit the errors of distribution. Spe-
cifically, a Laplacian sparse error distribution or more general
distributions based on M‐Estimators. The second characteristic
models the error image, which is the difference between the
occluded test face and the unoccluded training face of the same
identity, as low‐rank structural. Wang et al. [159] proposed a
method equipped with two stages: varying occlusion detection
stage consisting of occlusion detection and elimination, and
iterative recovery stage consisting of occluded parts being
recovered and unoccluded parts being reserved. With the use
of iteratively recovered strategy, this joint occlusion detecting
and recovery method can produce good global features to
benefit classification.

5.1.3 | Deep learning

A few works use deep learning techniques for occlusion
reconstruction. One is work [160], that extends a stacked sparse
denoising autoencoder to a double channel for facial occlusion
removal. It adopts the layerwise algorithm to learn a represen-
tation so that the learnt encoding parameters of clean data can
transfer to noisy data. As a result, the decoding parameters are
refined to obtain a noise‐free output. The other work [161]
proposes to combine the LSTM and autoencoder architectures
to address the face de‐occlusion problem. The proposed robust
LSTM‐Autoencoders (RLA) model consists of two LSTM
components. One spatial LSTM network encodes face patches
of different scales sequentially for robust occlusion encoding,
and the other dual‐channel LSTM network is used to decode the
representation to reconstruct the face as well as to detect the
occlusion. Additionally, adversarial CNNs are introduced to
enhance the discriminative information in the recovered faces.

5.2 | Inpainting

Image inpainting techniques are widely used to carefully obtain
occlusion‐free images and are not limited to face images.
Inpainting techniques focus on repairing the occluded images
and leave face recognition out of consideration. They can be
divided into 1) non‐blind inpainting and 2) blind inpainting
categories, depending on whether the location information of
corrupted pixels is provided or not. Deep learning is an
effective approach to blind inpainting.

5.2.1 | Non‐blind inpainting

Those techniques fill in the occluded part of an image using the
pixels around the missing region. Exemplar‐based techniques
that cheaply and effectively generate new texture by sampling
and copying colour values from the source are widely used. In
paper [162], a non‐blind inpainting method proposes a unified
scheme to determine the fill order of the target region, using an
exemplar‐based texture synthesis technique. The confidence
value of each pixel and image isophotes are combined to
determine the priority of filling. Ref. [163] presents an image
inpainting technique to remove occluded pixels when the oc-
clusion is small. More specifically, it combines feature extrac-
tion and fast weighted‐principal component analysis (FW‐
PCA) to restore the occluded images. More recently, a hybrid
technique [164] has been proposed where a PDE method and
modified exemplar inpainting is utilised to remark the occluded
face region. However, the occlusion type of face images
studied in this work is not representative of the real scenario.

5.2.2 | Deep learning for blind inpainting

Generative models are known for the ability to synthesise or
generate new samples from the same distribution of the
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training dataset. The core problem in generative models is to
address density estimation by unsupervised learning, which can
be carried out by explicit density estimation [165, 166], or
implicit density estimation [167]. The most prominent gener-
ative models are originated from the variational autoencoder
(VAE) [165] and the generative adversarial network (GAN)
[167, 168]. The traditional autoencoder is used to reconstruct
data, and the VAE [165] applies probabilistic spin to the
traditional autoencoder to allow generating a new image.
Having assumed that training data is generated from the un-
derlying latent representation, the VAE derives a lower bound
on the data likelihood that is tractable and can be optimised.
This method is a principled approach to generative models,
and useful features can be extracted by inference of q(z|x).
However, generated images are blurrier and of low quality.
Instead, the GAN [167] learns to generate a new image from
training distribution using a minimax game between the
generator network and the discriminator network. The
discriminator wants to distinguish between real and fake im-
ages, while the generator wants to fool the discriminator by
generating real‐looking images. Ref. [169] uses convolutional
architectures in the GAN and can generate realistic samples.
However, the GAN is notorious for unstable training charac-
teristics. Makhzani et al. [170] propose an adversarial autoen-
coder (AAE) to use the GAN framework as a variational
inference in a probabilistic autoencoder to ensure that gener-
ating from any part of a prior space results in meaningful
samples.

There are GAN variants for all kinds of applications. We
focus on methods that are relevant to face image editing and
image inpainting. One is a blind‐inpainting work [171] that
combines sparse coding [172] and deep neural networks to
tackle image denoising and inpainting. In particular, a stacked
sparse denoising autoencoder is trained to learn the mapping
function from generated corrupted noisy overlapping image
patches to the original noise‐free ones. The network is regu-
larised by a sparsity‐inducing term to avoid over‐fitting. This
method does not need prior information about the missing
region and provides solutions to complex pattern removal like
the superimposed text from an image. Context Encoders [173]
combine the encoder‐decoder architecture with context in-
formation of the missing part by regarding inpainting as a
context‐based pixel prediction problem. Specifically, the
encoder architecture is trained on the input images with
missing parts to obtain a latent representation while the
decoder architecture learns to recover the lost information by
using the latent representation. Pixel‐wise reconstruction loss
and adversarial loss are jointly used to supervise the context
encoders to learn semantic inpainting results. Several variants
of context encoders [173] are proposed; some extend it by
defining global and local discriminators [174, 175] and some
take the result of context encoders as the input and apply joint
optimization of image content and texture constraints to avoid
visible artefacts around the border of the hole [176]. Ref. [177]
relies on the power of the generative network to complete the
corrupted image without requiring an external training dataset.
A partial convolution based network [178] is proposed to only

consider valid pixels and apply a mechanism that can auto-
matically generate an updated mask, resulting in robustness to
image inpainting for irregular holes. Information Maximising
Generative Adversarial Networks (InfoGAN) [179] maximise
the mutual information between latent variables and the
observation in an unsupervised way. It decomposes the input
noise vector into the source of incompressible noise z and the
latent code c which will target the salient structured semantic
features of data distribution. By manipulating latent codes,
several visual concepts such as different hairstyles, presence or
absence of eyeglasses are discovered. Occlusion‐aware GAN
[180] is proposed to identify a corrupted image region with an
associated corrupted region recovered using a GAN pre‐
trained on occlusion‐free faces. Ref. [181] employs GAN for
eyes‐to‐face synthesis with only eyes visible. Very recently,
AttGAN [182], a face image editing method, has imposed
attribute classification constraints to the generated image so
that the desired attributes are incorporated. Hairstyles and
eyeglasses that may cause occlusion in a face image are treated
as attributes which can be triggered to be present or absent in
the generated image. ERGAN (Eyeglasses removal generative
adversarial network) [183] is proposed for eyeglasses removal
in the wild in an unsupervised manner. It is capable of
rendering a competitive removal quality in terms of realism and
diversity. In reference [184], ID‐GAN (identity‐diversity
generative adversarial network) combines a CNN‐based rec-
ogniser and GAN‐based recognition to inpaint realism and
identity‐preserving faces. The recogniser is treated as the third
player to compete with the generator.

6 | PERFORMANCE EVALUATION

In this section, we first evaluate the performance of occluded
face detection on the MAFA dataset [25] of partially occluded
faces. Next, we present the performance of face recognition
under occlusion in terms of the identification rate and the
verification accuracy on multiple benchmarks such as the AR
[185], CAS‐PEAL [186], and Extended Yale B [187] datasets.
Then we describe the representative algorithms based on the
proposed categories. In addition, we also categorise them in
the face recognition pipeline according to which component
they work on to tackle the occlusion.

6.1 | Evaluation of occluded face detection

There are several datasets for face detection benchmarking,
which are the FDDB [51], PASCAL Face [52], AFW [58], IJB‐
A [188], Widerface [38] and MAFA [25] datasets. MAFA is
created for occluded face detection, involving 60 commonly
used masks, such as simple masks, elaborate masks, and masks
consisting of parts of the human body, which occur in daily
life. Besides, it contains 35, 806 face annotations with a min-
imum size of 32 � 32 pixels. Some examples of occluded face
images are shown in Figure 1. To the best of our knowledge,
the MAFA dataset takes the occlusions as the main challenge in
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face detection, so it is relevant to evaluate the capacity of
occluded face detection methods. The performances of
representative algorithms on the MAFA dataset are summar-
ised in Table 2 (derived from paper [69]). The precision on the
MAFA testing set with the iou threshold value 0.5 is shown.
Only a few methods report the results below.

6.2 | Existing OFR benchmark datasets

There are numerous standard datasets for general face
recognition, but they are not appropriate for OFR (occluded
face recognition) because occluded faces are barely present in
the datasets. Alternatively, researchers make the most of the
general datasets to generate synthetic occluded datasets by
incorporating synthetic occlusions, occluding rectangles, etc.
Five categories regarding OFR testing scenarios are illustrated
in Figure 2, which are listed from most to least realistic,
including real occlusions, partial faces, synthetic occlusions,
occluding rectangles and occlusion by unrelated images. Since
datasets including real occlusions are rare, synthetic occluded
datasets are generated so that they can meet the requirements
of OFR, where an occlusion‐free gallery is queried using
occluded faces. It is worth mentioning that the recently pub-
lished DFW dataset (disguised faces in the wild) [189] also
contains a few occluded faces. However, this dataset includes
impersonator and genuine obfuscated face images for each
subject in order to handle face authentication challenge that
we are not addressing. Thus we leave it out of occluded face
dataset.

We make it a rule to state the ‘D’ as the original dataset,
and ‘D‐occ’ as the occluded dataset originated from ‘D’. If
there is real occlusion included in the ‘D’, then it is directly
used for establishment. Otherwise, synthesised occlusions are
imposed to form ‘D‐occ’ for establishment. Table 3 summa-
rises each dataset by the number of subjects, the number of
images, whether or not real occlusions are included, and if not,
what kind of synthesised occlusions are used to obtain the
‘D‐occ’ dataset. Here AR and Extended Yale B, the most
widely used face datasets, are discussed.

AR face database is one of the very few datasets that
contain real occlusions (see Figure 2 first column). It

consists of over 4000 faces of 126 individuals: 70 men and
56 women, taken in two sessions with a 2‐week interval.
There are 13 images per individual in every session, and
these images differ in terms of facial expression, illumina-
tion, and partial occlusion, getting sunglasses and scarves
involved. Index 8 and 11 of each session indicates the per-
son wearing sunglasses or a scarf, respectively. Index 9‐10
and 11‐12 combine the sunglasses or the scarf with illumi-
nations, respectively.

Extended Yale B face database contains 161, 289 face
images from 38 persons. Each person is captured under nine
poses and 64 different illuminations without occlusion. It is
widely used to evaluate the efficacy of the algorithms under
synthesised occlusions. Occluding unrelated images are
randomly superimposed on the occlusion‐free faces (see
Figure 2 last column). Typically, gallery images are occlusion‐
free faces, and test images are randomly occluded with unre-
lated images such as a baboon, or a square image. Sometimes,
occluded faces are occluded with, for example, white or black
rectangles to constitute a ‘D‐occ’ dataset (see Figure 2 fourth
column).

6.3 | Evaluation of occluded face
recognition

In this part, we demonstrate the results of the most repre-
sentative methods based on the proposed categories. In
addition, we also categorise methods based on the face
recognition pipeline and show evaluation results from this
aspect.

TABLE 2 Evaluation summary of different occluded face detection
algorithms on MAFA

Approach Publication
Precision
‘masked’

Precision ‘w/o
Ignored’ (%)

Occlusion
unaware

[40] NA 60.8

Occlusion aware [25] NA 76.4

[63] 76.5% 88.3

Occlusion
segmentation

[69] 83.5% 91.9

Note: The setting ‘masked’ only counts the faces annotated by the MAFA dataset and
‘w/o Ignored’ counts all detected faces, including the ones that are missing annotation.

TABLE 3 Summary of existing benchmark datasets for occluded face
recognition

Dataset # Sub # Ims Real Occ. Syn. Occ.

AR [185] 126 4, 000 Yes NA

Extend YaleB [187] 38 161, 289 No Unrelated Ims

ORL [124] 40 400 No Rectangle

FERET [113] 1500 13, 000 No Rectangle

LFW [59] 5749 13, 000 No Partial faces

CAS‐PEAL [186] 1040 9, 594 Yes NA

CMU‐PIE [44] 68 41, 368 No Rectangle

PubFig [70] 200 58, 797 No Partial faces

NIR‐distance [140] 276 4300 No Partial faces

NIR‐mobile [183] 374 11, 286 No Partial faces

FRGC [105] 276 943 No Partial faces

FRGC‐v2 [118] 466 4, 007 No Partial faces

IJB‐C [26] 3531 148, 800 Yes NA

Notes: ‘# Sub’ is short for the number of subjects. ‘# Ims’ means the number of images.
‘Real Occ.’ says whether real occlusions are included in the original dataset. ‘Syn. Occ.’ is
short for synthesised occlusions imposed on the original dataset to obtain ‘D‐occ’.
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6.3.1 | Evaluation based on the proposed
categories

We summarise the identification performances of representa-
tive algorithms on the AR database in Table 4 based on the
proposed categories: ORFE, OAFR, and ORecFR. To make
sure these methods can be compared, we group the experi-
mental settings and introduce the corresponding abbreviation
for simplicity as follows:

(1) Face images for training and testing belong to the same
individual and without overlapping. We use ‘S‐TR‐Xips’ to
abbreviate the situation when the training set contains X
unoccluded images per person. For example, ‘S‐TR‐8ips’
indicates that for each person there are eight of unoc-
cluded 13 images used for training. The rest of the face
images occluded by sunglasses and the scarf are evaluated
during testing. Specifically, ‘S‐TR‐SSPP’ single sample per
person in the training set remains a challenging task.
Because for each person there is only one unoccluded face
image available for training. Usually, the gallery is equal to
training set if not stated otherwise. We add asterisks to
mark the gallery, only taking one neutral face for
enrolment.

(2) Face images for training and testing belong to the same
individual, without overlapping. The training set consists
of occluded faces for training, denoting as ‘S‐TR‐OccX’,
with X as the number of images. For example, ‘S‐TR‐
Occ3’ indicates that three occluded face images from one
session are used for training, and the evaluation is done on
the other session. It is plausible that ‘S‐TR‐OccX’ setting is
less difficult compared to ‘S‐TR‐Xips’, which has a higher
accuracy. Typically, one neutral face image per individual is
enroled during testing.

(3) Testing subjects are a subset of training subjects denoting
as ‘Ex‐TR‐SSPP’. Images of extra persons are included in
the training set. Apart from that, the same subjects are
used for training and testing. The training set also consists
of a single sample per person.

(4) There is no overlapping between subjects for training and
testing, which is represented by ‘D‐TR’. We use the setting
‘D‐TR‐DL’ to indicate if there are large‐scale general data
for training with deep learning techniques.

(5) Images of subjects are randomly selected for training, and
the remaining ones are for testing, what we called ‘S‐TR‐
Rand’.

As results on the AR dataset in Table 4 show, these
experimental setups were slightly different from paper to
paper, bringing a struggle to interpret these results at the first
sight. This is because the AR dataset does not provide
standard protocols for use, which are essential to compare
methods in a fair ground. Despite the absence of the stan-
dard protocols, it is still possible to get some useful obser-
vations and findings. First, most methods treat session1 of
AR as the target and report the results on sunglasses and
scarf individually. Second, there are some popular protocols

gradually formed among these methods, which can be treated
as a relatively fair ground for comparison. These are (i)
S‐TR‐7IPS, (ii) S‐TR‐8IPS, and (iii) S‐TR‐SSPP. Specif-
ically, S‐TR‐SSPP in particular has become a challenge and
defines an unambiguous protocol to follow. Last but not
least, thanks to the presence of deep learning methods, there
is a trend to rely on general massive data for training rather
than splitting the AR dataset to form the training set. There
is still some room to improve the OFR performance, espe-
cially when we take the SSPP (single sample per person)
protocol into consideration.

The identification performance of representative algo-
rithms on extended Yale B as well as other benchmarks is
summarised in Table 5. The experimental settings include
different occlusion types, such as an occluding rectangle and
unrelated images, the occlusion ratio over a image (ranging
from 0.3 to 0.9), the number of training/testing subjects are
listed in detail. Even though the original occlusion‐free datasets
such as Extended Yale B and ORL are well addressed by
current face recognition algorithms, the ‘D‐occ’ (occluded
version) originated from these datasets still remains a challenge
(see Figure 2). It is not surprising that algorithms suffer severe
degradation when 90% of the face parts are occluded by a
rectangle or unrelated images. Moreover, these testing sce-
narios are not similar to what we would find in a realistic
scenario.

Apart from an occluding rectangle and unrelated images,
some methods intend to solve partial face issues by using
arbitrary patches cropped from a face image. An evaluation
summary of different categories of representative algorithms
based on verification rates is shown in Table 6. Since partial
faces are arbitrary patches, it is hard to be sure algorithms are
on a level playing field. Therefore, these methods cannot be
compared properly. For example, partial faces with eye regions
are supposed to contain more discriminative features
compared to those with no eyes involved.

6.3.2 | Evaluation based on the face recognition
pipeline for categorisation

Generally, occlusion robust feature extraction (ORFE)
methods deal with occlusion using feature extraction. How-
ever, they sometimes treat occluded faceRepresentative algo-
rithms recognition as a semantic correspondence problem and
address the occlusion challenge in the comparison component
of the face recognition pipeline. Similarly, occlusion aware face
recognition (OAFR) usually solves the occluded face recogni-
tion using comparison. Nevertheless, some occlusion‐aware
techniques use an occlusion‐robust dictionary to represent an
occluded face, which lies in the feature extraction component.
Therefore, we categorise methods discussed so far based on a
general face recognition pipeline to offer a fresh perspective.
Representative algorithms regarding application‐oriented pur-
pose are listed in Table 8 and References classified based on
their components are listed in Table 7. Each component is
described below:
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TABLE 4 Evaluation Summary of Representative Algorithms on AR dataset regarding identification rates

Category Publication Occlusions
Experiment
settings

# of train
subjects

# of test
subjects

Identification
rates (%)

Session1 Session2

ORFE: patch‐engineered features [80] Sunglasses S‐TR‐8IPS 50 50 84.0 80.0

Scarf 100.0 96.0

[84] Sunglasses S‐TR‐SSPP 100 100 89.0 98.0

Scarf 73.0 92.0

ORFE: learning‐based features [98] Sunglasses S‐TR‐SSPP 50 50 52.0 NA

Scarf 48.0 NA

[100] Sunglasses S‐TR‐8IPS 40 40 80.0 NA

Scarf 70.8 NA

[101] Sunglasses D‐TR 50 50 98.0 NA

Scarf 90.0 NA

[105] Sunglasses S‐TR‐8IPS 100 100 97.5 NA

Scarf 93.5 NA

[102] Sunglasses&Scarf S‐TR‐3IPS 100 100 89.0 NA

Black block 94.0 NA

[107] Sunglasses S‐TR‐7IPS 100 100 92.3 51.7

Scarf 95.0 84.3

[156] Sunglasses⋆ S‐TR‐Occ1 100 100 93.0

Scarf⋆ 92.7

Sunglasses&Scarf⋆ 92.6

[103] Sunglasses⋆ S‐TR‐3IPS 100 100 95.7 NA

Scarf⋆ 96.3 NA

[104] Sunglasses⋆ S‐TR‐Occ3 100 100 TR 98.0

Scarf⋆ TR 97.0

[112] Sunglasses S‐TR‐SSPP 100 100 TR 92.0

Scarf TR 91.0

Sunglasses & Scarf TR 82.5

[113] Sunglasses⋆ S‐TR‐SSPP 80 80 88.0 56.0

Scarf⋆ 69.0 44.0

[114] Sunglasses⋆ EX‐TR‐SSPP 80 80 95.8 78.3

Scarf⋆ 90.0 77.9

[111] Sunglasses & Scarf D‐TR‐DL Webface+20 80 100.0 96.3

[115] Sunglasses & Scarf S‐TR‐SSPP 100 100 75.0

[126] Sunglasses S‐TR‐7IPS 50 50 94.7 85.3

Scarf 99.3 98.7

[184] Sunglasses S‐TR‐3IPS 80 80 99.0 NA

Scarf 87.6 NA
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� Data Augmentation or Data Recovery: augmentation based
techniques cope with the occlusion challenge by augmenting
training data to include possible real‐life occlusion. With the
use of deep learning techniques, occlusion‐robust features

can be extracted. Recovery‐based methods use local or
global knowledge to explicitly fill the occlusion area or de‐
occlude the face in an implicit way, for example using an
encoder‐decoder structure.

TAB LE 4 (Continued)

Category Publication Occlusions
Experiment
settings

# of train
subjects

# of test
subjects

Identification
rates (%)

Session1 Session2

OAFR: Occlusion detection face
recognition

[127] Sunglasses EX‐TR‐SSPP 100 100 NA 49.0

Scarf NA 55.0

[129] Sunglasses⋆ S‐TR‐3IPS⋆ 80 80 TR 54.2

Scarf⋆ TR 81.3

[131] Sunglasses⋆ S‐TR‐8IPS‐Occ1 60 60 97.5 NA

Scarf⋆ 99.2 NA

[137] Sunglasses S‐TR‐RAND 100 100 95.2

Scarf 94.2

[139] Sunglasses D‐TR‐DL Webface 100 99.7 NA

Scarf 100.0 NA

OAFR: Partial face recognition [144] Sunglasses⋆ S‐TR‐7IPS 100 100 94.3 NA

Scarf⋆ 98.0 NA

Sunglasses&Scarf⋆ 96.2 NA

[145] Sunglasses⋆ S‐TR‐14IPS 100 100 98.0 NA

Scarf⋆ 97.0 NA

Sunglasses &
Scarf⋆

97.5 NA

[146] Sunglasses⋆ S‐TR‐7IPS 100 100 100.0 92.0

Scarf⋆ 100.0 95.3

ORecFR: Occlusion recovery face
recognition

[151] Sunglasses &
Scarf⋆

S‐TR‐13IPS 100 100 TR 90.6

[152] Sunglasses S‐TR‐8IPS 100 100 100.0 NA

Scarf 97.0 NA

[153] Sunglasses⋆ S‐TR‐7IPS 121 121 76.6 NA

Scarf⋆ 60.9 NA

[154] Sunglasses⋆ S‐TR‐8IPS 100 100 97.5 NA

[190] Sunglasses S‐TR‐8IPS 100 100 94.5 NA

Scarf 95.0 NA

[157] Sunglasses S‐TR‐3IPS‐Occ3 120 120 NA 68.5

Scarf NA 70.7

[158] Sunglasses S‐TR‐2IPS 100 100 89.8

Scarf 78.8

[159] Sunglasses S‐TR‐4IPS 120 120 99.2 99.7

Scarf 87.5 83.6

Notes: Three categories are: (1) ORFE, (2) OAFR, and (3) ORecFR. The detail of ‘Experiment settings’ abbreviations is shown. In column ‘Occlusions,’ the asterisk means specific
occlusion under illumination. In column ‘Identification Rates,’ TR means these methods train on session one.
Abbreviations: FR, face recognition; OAFR, Occlusion Aware Face Recognition; ORFE, Occlusion Robust Feature Extraction; ORFE, Occlusion Robust Feature Extraction.
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TABLE 5 Evaluation Summary of Representative Algorithms on the other Benchmarks regarding identification rates

Category Publication Occlusions
Occlusion
arguments Benchmark

# Of train
subjects

# Of test
subjects

Identification rates
(%)

ORFE [100] Black or white
rectangle

occlusion size:50 �
50

ORL 40 40 70.0

[101] Black rectangle occlusion size:50 �
50

FERET 240 960 78.5

[105] Unrelated image occlusion ratio:0.5 Extended Yale
B

38 38 65.3

[107] Unrelated image occlusion ratio:0.5 Extended Yale
B

38 38 87.4

[156] Unrelated image occlusion ratio:0.8 Extended Yale
B

38 38 70.0

[104] Unrelated image occlusion ratio:0.8 Extended Yale
B

38 38 53.0

[111] Wild condition NA LFW 108 50 86.0

NA 851 124 65.3

[114] Glasses & Sunglasses NA CAS‐PEAL 350 350 96.6

Hat NA 90.3

Unrelated image occlusion ratio:0.5 Extended Yale
B

30 30 78.4

[112] Unrelated image occlusion ratio:0.6 Extended Yale
B

38 38 96.0

Random pixels
rectangle

occlusion ratio:0.6 81.0

Mixture noise occlusion ratio:0.6 25.0

[113] Unrelated image occlusion ratio:0.3 Extended Yale
B

30 30 77.6

[137] Pepper noise portion:40% Extended Yale
B

38 38 81.3

White rectangle NA 82.9

Salt&Pepper noise portion:40% CMU‐PIE 68 68 98.5

White rectangle occlusion size:10 �
10

98.8

[116] Black rectangle occlusion ratio:0.3 Extended Yale
B

38 38 99.2

Black rectangle occlusion ratio:0.4 97.6

Black rectangle occlusion ratio:0.5 96.1

[110] Unrelated image occlusion ratio:0.5 Extended Yale
B

38 38 96.9

Random pixels
rectangle

portion:70% 98.9

Black rectangle occlusion ratio:0.5 CMU‐PIE 68 68 93.9
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TAB LE 5 (Continued)

Category Publication Occlusions
Occlusion
arguments Benchmark

# Of train
subjects

# Of test
subjects

Identification rates
(%)

OAFR [144] Arbitrary patches NA Partial‐LFW 158 158 34.8

[145] Arbitrary patches NA Partial‐LFW 158 158 50.7

Unrelated image occlusion ratio:0.5 Extended Yale
B

32 32 30.2

[146] Unrelated image occlusion ratio:0.5 Extended Yale
B

32 32 56.7

Arbitrary patches NA Partial‐PubFig 60 140 42.9

[147] Arbitrary patches NA Partial‐LFW NA 1000 27.3

Arbitrary patches NA NIR‐distance NA 276 94.9

Arbitrary patches NA Partial‐YTF NA 200 61.0

[148] Arbitrary patches NA Partial‐LFW NA 1000 32.4

Arbitrary patches NA NIR‐distance NA 127 92.8

Arbitrary patches NA NIR‐mobile NA 178 93.8

ORecFR [190] Unrelated image occlusion ratio:0.7 Extended Yale
B

38 38 62.3

[152] Unrelated image occlusion ratio:0.7 Extended Yale
B

38 38 88.5

Multiple patches occlusion ratio:0.8 96.0

[154] Black or white
rectangle

occlusion ratio:0.57 Extended Yale
B

38 38 90.4

Unrelated image occlusion ratio:0.5 87.7

[157] Black rectangle on eyes occlusion ratio:0.3 Extended Yale
B

38 38 98.6

[158] Unrelated image occlusion ratio:0.6 Extended Yale
B

38 38 95.8

Unrelated image occlusion ratio:0.9 71.9

Notes: Three categories are given: (1) ORFE, (2) OAFR, and (3) ORecFR. In the ‘Occlusion Arguments’ column, details including the size of an occlusion, the occlusion
ratio to the face image and portion of noise are listed. In ‘# of Train Subjects,’ NA represents not available from the paper. The Rank one identification rates are shown.
Some results are roughly estimated from the figure in the original papers. Since not all methods are of the same experimental settings, these methods cannot be compared
properly.
Abbreviations: FR, face recognition; OAFR, Occlusion Aware Face Recognition; ORFE, Occlusion Robust Feature Extraction; ORFE, Occlusion Robust Feature Extraction.

TABLE 6 Evaluation Summary of
Representative Algorithms regarding
verification rates

Publication Occlusions Benchmark # Of subjects in gallery Verification rates

[94] Eyeglasses FRGC‐v2 466 90%@FAR = 0.001

[83] Wild condition LFW 1680 60%@FAR = 0.1

[104] Wild condition LFW 1680 61%@FAR = 0.1

[146] Arbitrary patches Partial‐LFW 1680 50%@FAR = 0.1

Arbitrary patches Partial‐PubFig 140 63%@FAR = 0.1

[147] Arbitrary patches Partial‐LFW 1000 29.8%@FAR = 0.001

[148] Arbitrary patches Partial‐LFW 1000 37.9%@FAR = 0.001

Notes: Occlusion Robust Feature Extraction and Occlusion Aware Face Recognition report the verification rates by cut‐off
rules. In the ‘Benchmark’ column, ‘Partial‐x’ means the new partial faces originate from the database named ‘x.’ Some results
are roughly estimated from the figure in the original papers. Since not all methods are of the same experimental settings, these
methods cannot be compared properly.
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� Feature extraction intends to make the most of the locality
characteristic of occlusion using patch‐based engineered
feature extraction or applies machine learning or deep
learning to obtain features. Specifically, statistical learning or
sparse representation are two commonly used techniques in
this approach.

� Feature comparison: features obtained for an entire face are
of fixed length, while features for occluded face images are
determined by the occlusion area and are therefore of varied
length. The comparison phase is used to find out the se-
mantic correspondence between fixed‐length and varied
features because it is meaningless to match different se-
mantic parts.

� Fusion strategy relies on the assumption that occlusions
have less effect on identity recognition compared with other
visible facial areas. Occlusion challenges can be met by
fusing the decision of multiple classifiers or using the ma-
jority voting strategy to minimise the effect of features
extracted from the occlusion.

7 | DISCUSSION

In this section, future dataset challenges and research chal-
lenges are discussed. In many cases, a new research challenge

means specific dataset requirements. On the other hand,
datasets also reflect underlying challenges that need to be
solved in real life.

7.1 | Future dataset challenges

There are three major issues in the datasets referred to: dataset
scale, occlusion diversity, and standard protocol. The
datasets for occluded face recognition are of a small scale. AR
is one of the very few that contain real occlusions and images
of only 126 individuals are included. As for occlusion diversity,
sunglasses and scarf occlusions are frequently considered.
However, occlusions in real life are a lot more diverse than
that. Regarding synthesised occlusions, occluding rectangles
and unrelated images are commonly applied. In the literature,
‘Baboon’ is a typically used unrelated image to generate syn-
thetic occluded faces [104, 158, 190]. However, these syn-
thetically occluded faces like those using ‘Baboon’, or a black/
white rectangle are not representative of real‐life occluded
faces. With regard to a standard protocol, the results of
representative approaches obtained from AR and other
benchmark datasets cannot be compared objectively due to a
wide diversity of occluded faces. Therefore, future research will
have to overcome three weaknesses in the current datasets.
Future benchmark datasets will contain more individuals,

TABLE 7 Summary of Representative Algorithms based on components they work on during OFR

Pipeline category Publication

Data augmentation/Recovery [90–92, 123–125, 150, 151, 153, 154, 159–164, 179, 182–184, 190]

Feature extraction [71, 72, 75, 77, 78, 80, 93, 98–100, 102, 103, 105, 107, 109–114, 116, 117, 126, 137–139, 143, 147,
148, 151, 152, 156, 158]

Feature comparison [82, 83, 101, 104, 128, 129, 131, 133, 144–146]

Fusion strategy [84, 94, 114, 117, 127, 140–142, 157]

Notes: In the ‘data augmentation/recovery’ category, data augmentation component means generating synthesised occluded faces while the data recovery component intends to eliminate
the occluded facial part. The fusion strategy component consists of feature‐level fusion as well as decision‐level fusion.

TABLE 8 Summary of representative algorithms regarding application‐oriented purpose from Figure 3

Abbreviation Application‐oriented purpose Publication

OFD Occluded face detection [25, 38, 51–53, 57–63, 65, 69, 70]

ORFE Patch based engineered features [71, 72, 75, 77, 78, 80, 81, 83, 84, 93, 94, 114]

Learning‐based features [91–93, 98–105, 107, 109–114, 116, 117, 123–126, 156]

OAFR Occlusion detection [69, 132]

Occlusion discard face recognition [127–129, 131, 133, 137–139]

Partial face detection NA

Partial face recognition [140, 141, 143–148]

ORFR Occlusion recovery [160, 162–164, 171–183]

Occlusion recovery face recognition [24, 27, 32, 36, 61, 63, 74, 80, 91, 115, 152, 189]

Notes: There is a category for occluded face detection with the abbreviation ‘OFD’. Three classes for occluded face recognition: (1) ORFE, (2) OAFR, and (3) ORFR. To our
knowledge, there are no research works on detecting partial face; thus, we mark it as ‘NA’ (not available).
Abbreviations: FR, face recognition; OAFR, Occlusion Aware Face Recognition; ORFE, Occlusion Robust Feature Extraction; ORFE, Occlusion Robust Feature Extraction.

600 - ZENG ET AL.

 20474946, 2021, 6, D
ow

nloaded from
 https://ietresearch.onlinelibrary.w

iley.com
/doi/10.1049/bm

e2.12029 by R
eadcube-L

abtiva, W
iley O

nline L
ibrary on [26/11/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



various and sufficient occlusions, and well‐defined evaluation
protocols.

Apart from specific requirements for benchmark datasets,
collecting a massive occluded face dataset for training is also
inevitable as we plunge into deep learning techniques [124].
However, the main source of face images is usually the web,
where labelled faces with occlusions are scarce. How to label
occluded faces efficiently is an open issue that needs to be
resolved because some severely occluded faces are difficult or
impossible to be recognized by humans. From this aspect,
occluded face recognition remains a challenge in the future.
Given the combination of the pose variations, low resolution
etc., recognising unconstrained faces is far from being solved.

For the development of occluded face recognition tech-
niques, new large‐scale datasets are needed that respond to the
occlusion challenges. Recently, IJB‐C [26], a large‐scale dataset,
has been made publicly available. It not only contains many
natural occlusions but also provides annotated occlusion lo-
cations. The public availability of IJB‐C may usher in a new
development of occluded face recognition. In the future, we
expect to see the standard evaluation of fully efficient occluded
face recognition algorithms on the AR dataset as well as on
newly developed real‐life and large‐scale IJB‐C face datasets.

7.2 | Future research challenges

In the future, unconstrained occluded face recognition will
become a challenging problem that needs to be addressed.
Unlike the occluded faces we are handling, unconstrained
occluded faces should conform to the future benchmark
datasets, not limited by predefined occlusions. Currently used
datasets such as AR and Extended Yale B are both problematic
since they are aligned and captured in a constrained environ-
ment. Apart from unconstrained occluded face recognition, it
remains an open issue to resolve face recognition burdened
with unconstrained occlusions and other challenges such as
large pose variations, age gap, low resolution, etc. It is worth
mentioning that unconstrained face recognition usually does
not take the occlusion challenge as the major challenge.
Instead, unconstrained face recognition mainly takes pose and
expression challenges into consideration. Face recognition will
be free from constraints if real‐life occlusion plays an equally
important role among these challenges.

Since the existing occluded face recognition approaches
cope with occlusion challenges from distinct perspectives, we
expect the individual improvements in occlusion robust feature
extraction, occlusion aware face recognition, and occlusion
recovery based face recognition. The majority of methods in
the literature so far follow the line of traditional machine
learning techniques. Methods for occluded face recognition in
the future will make use of deep learning techniques, especially
CNN based deep networks. Based on the method categories in
Figure 3, we suggest a number of ways to develop a face
recognition system that is better able to handle occlusions as
follows.

Novel data augmentation techniques are needed that
could help to learn more discriminative feature representations
robust to occlusions if a CNN deep network is trained on the
augmented dataset [122–124]. Current solutions for data
augmentation mainly rely on large‐scale training data from the
web, and use occlusion templates to generate synthesised
occluded faces. However, manually designed occlusion tem-
plates heavily rely on accurate facial landmarking, and an
acceptable occluded face can only be achieved if the occlusion
template is properly aligned with the facial landmarks. For
example, eyeglasses should be scaled and aligned to the eye
centres. One potential solution is to take advantage of GANs
to generate natural occluded faces by transferring the occlusion
type from a real occluded face to an occlusion‐free face.

More effective occlusion recovery models need to be
devised to make the most of state‐of‐the‐art unified face
recognition systems. Current occlusion recovery solutions
adopt an encoder‐decoder architecture for recovery and are
designed for visually pleasing results rather than accurate
reconstruction. One potential way to resolve this issue is to
combine the occlusion recovery task and identification or
verification task in a multi‐task manner [184]. The adversarial
loss can be incorporated to ensure that the recovered face
looks natural.

Newocclusion detection techniques need to be designed
to take advantage of massive public datasets. Better occlusion
detection not only makes it possible to generate occlusion
templates automatically but also provides an informative pre-
processing for face recognition [138, 139]. Most methods
reviewed address the occlusion detection problem by parti-
tioning the face into patches using a binary classifier, resulting in
a rough occlusion area. Combining occlusion detection and
occluded face recognition in a unified framework seems a
promising way, leading to an automatic face recognition system.

8 | CONCLUSION

In this article, we present a thorough survey of face recognition
techniques under occlusion and systematically categorise
methods up to now into 1) occlusion robust feature extraction,
2) occlusion aware face recognition, and 3) occlusion
recovery‐based face recognition. Newly published and inno-
vative papers, especially recent deep learning techniques for
occluded face recognition, have been discussed. Furthermore,
we report comparative performance evaluations in terms of
occluded face detection and face recognition. In the end, we
discuss future challenges in terms of dataset and research
(including potential solutions) that move the field forward.
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APPENDIX
A glossary of abbreviations and expansions for terminologies
is illustrated in Table 9.

TABLE 9 A glossary of abbreviations and expansions for
terminologies

Abbrev Expansion

AAE Adversarial autoEncoder

AFC Adaptive feature convolution

AOFD Adversarial occlusion‐aware face detection

CSLBP Centre‐symmetric local binary patterns

DA Denosing autoencoder

DCNNs Deep convolutional neural networks

DDRC Deep dictionary representation based classification

DMSC Discriminative multiscale sparse coding

DoG Different of Gaussian filters

DPM Deformable part models

DSCNNs Double supervision convolutional neural network

EBGM Elastic bunch graph matching

ECSLBP Enhanced centre‐symmetric local binary patterns

ELOC Efficient locality‐constrained occlusion coding

ERBF Ensemble of radial basis function

ERGAN Eyeglasses removal generative adversarial network

FAN Face attention network

FANet Feature agglomeration networks

FCN Fully convolutional network

FW‐PCA Fast weighted‐principal component analysis

GAN Generative adversarial network

GRRC Gabor based robust representation and classification

HOG Histogram of oriented gradient

ICA Independent component analysis

ID‐GAN Identity‐diversity generative adversarial network

TAB LE 9 (Continued)

Abbrev Expansion

InfoGAN Information maximising generative adversarial network

KCFA Kernel correlation feature analysis

KLD‐LGBP Kullback‐Leibler Divergence‐local Gabor binary patterns

LBP Local binary patterns

LDA Linear discriminant analysis

LGBPHS Local Gabor binary pattern histogram sequences

LLE Locally linear embedding

LSTM Long short term memory

MDSCNN Multiscale double convolutional neural network

MKD Multi‐keypoint descriptors

NNAODL Nuclear norm adapted occlusion dictionary learning

NMF Non‐negative matrix factorization

PCA Principal component analysis

PDSN Pairwise differential siamese network

R‐CNN Regions with convolutional neural networks

RCSLBP Reinforced centrosymmetric local binary pattern

RDLRR Robust discriminative low‐rank representation

RLA Robust LSTM‐Autoencoders

RPSM Robust point set matching

SIFT Scale invariant feature transform

SOC Structured occlusion coding

SOM Self‐organising maps

SRC Sparse representation classifiers

SSD Single‐shot multibox detector

SSEC Structured sparse error coding

SSRC Structured sparse representation classification

SVM Support vector machine

VAE Variational AutoEncoder

YOLO You only look once
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