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Abstract—When encountering a dubious diagnostic
case, medical instance retrieval can help radiologists make
evidence-based diaghoses by finding images containing
instances similar to a query case from a large image
database. The similarity between the query case and re-
trieved similar cases is determined by visual features ex-
tracted from pathologically abnormal regions. However, the
manifestation of these regions often lacks specificity, i.e.,
different diseases can have the same manifestation, and
different manifestations may occur at different stages of
the same disease. To combat the manifestation ambigu-
ity in medical instance retrieval, we propose a novel deep
framework called Y-Net, encoding images into compact
hash-codes generated from convolutional features by fea-
ture aggregation. Y-Net can learn highly discriminative con-
volutional features by unifying the pixel-wise segmenta-
tion loss and classification loss. The segmentation loss
allows exploring subtle spatial differences for good spatial-
discriminability while the classification loss utilizes class-
aware semantic information for good semantic-separability.
As a result, Y-Net can enhance the visual features in patho-
logically abnormal regions and suppress the disturbing of
the background during model training, which could effec-
tively embed discriminative features into the hash-codes
in the retrieval stage. Extensive experiments on two med-
ical image datasets demonstrate that Y-Net can allevi-
ate the ambiguity of pathologically abnormal regions and
its retrieval performance outperforms the state-of-the-art
method by an average of 9.27% on the returned list of 10.
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[. INTRODUCTION

ONTENT-BASED image retrieval (CBIR) has been

mostly tackled as the problem of instance-level image
retrieval [1] and has been a long-standing research topic in
the computer vision society [2]. When encountering a dubious
diagnostic case, CBIR systems can help radiologists search for
similar cases in their decision-making process. Instance-level
image retrieval is to hunt for images with the same instance
as a query image in a large image database [3]. The benefit of
instance-level retrieval for medical image screening and diag-
nosing can be witnessed in an observer study [4]. Five partici-
pating radiologists were given the task of querying nodules, for
which they were required to infer the likelihood of malignancy.
The task was performed twice: once with the aid of the search
engine and once not. The search engine returned 3 instances
of the most similar malignant images and 3 instances of the
most similar benign images to help these radiologists making
the inference. The average performance of the five radiologists
was shown to increase from 0.56 to 0.63 with the aid of similar
nodules.

The relevancy of instance-level retrieval is mainly grounded
on the visual similarity of instances rather than the whole
image [5], so the features of a region-wise instance residing
in a retrieved image should be explored effectively. Recently,
many existing works on instance-level retrieval typically ex-
tracted visual features by using convolutional neural networks
(CNN) to prevent the visual features unique to an instance from
drowning in the global image. Early works [6], [7] focused on
replacing traditional hand-crafted descriptors with features from
fully-connected layers. The second generation of works [8],
[9] achieved significant gains by encoding the activations of
convolutional layers as region-wise feature descriptors. Among
CNN-based approaches of instance-level retrieval, deep hashing
methods [10], [11] have arisen as a promising solution because
of their efficient data storage and fast searching.

Deep hashing methods can preserve the information of high-
dimensional images by jointly learning image descriptors and
hash-codes in an end-to-end framework [12]-[14]. The image
descriptors from fully-connected layers or convolutional layers
are mapped into compact hash-codes for similarity comparison.
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Benign nodule of chest X-ray Malignant nodule of chest X-ray

Glaucoma CDR=0.6162 Glaucoma CDR=0.7986

Fig. 1. lllustration of ambiguity in medical image diagnosis. The upper
row is two chest X-ray images labeled benign and malignant nodule.
The down row is two glaucoma fundus images with a cup to disk ratio
(CDR).

Existing deep hash methods for instance-level retrieval have
been shown to be effective and efficient [ 15], [16]. However, gen-
erating hash-codes in medical instance retrieval is challenging
due to the manifestation ambiguity of pathologically abnormal
regions. Such an issue plagues radiologists in the clinically
routine screening and largely affects medical instance retrieval
performance. It can be varied in two kinds: different diseases can
have the same pathological abnormalities (SPDD), while differ-
ent pathological manifestations may occur at different stages of
the same disease (DPSD). As Fig. 1 shows, 1) SPDD problem:
it is difficult to interpret chest X-ray images and recognize the
subtle difference between malignant and benign nodules, the
lesion region of both images is on the left lung’s upper lobe
and has similar manifestations. However, the malignant image
is diagnosed as lung cancer, and the benign image is pulmonary
hematoma. Only professional radiologists can find the difference
between benign and malignant nodules. 2) DPSD problem: cup
to disk ratio (CDR), which is the ratio of cup diameter to disc
diameter and often be employed as the main clue of glaucoma
diagnose, varies at different stages.

The ambiguity of pathologically abnormal regions may pre-
vent the assimilation of medical instance retrieval into an as-
sistant tool for medico-decision [17]. One solution is to pro-
vide ground-truth fine-grained labels to combat the ambiguity
of pathologically abnormal regions. However, medical anno-
tations remain highly dependant on manual expert feedback
with high inter-observer variability [18]. Generally, medical
image datasets can provide class labels for classification and
pixel-wise masks for segmentation. Hence, a feasible solution
is to effectively exploit the visual contents of pathologically ab-
normal regions based on class labels and pixel-wise masks [19].
Following this way, we present a novel deep framework, called
Y-Net, to learn deep representations from image spaces by uni-
fying segmentation and classification losses. During the training

stage, the spatially subtle differences and class-aware semantic
information of pathological regions are simultaneously learned
into convolutional features. In the test stage, the learned convo-
lutional features are aggregated into the hash-codes to preserve
visual features unique to pathologically abnormal regions.

There are two main motivations to present the Y-Net frame-
work for alleviating the specificity shortage in medical instance
retrieval. First, traditional deep hashing networks are to learn the
global descriptor in an end-to-end way. They are prone to make
the discriminative regions drown in the global descriptor. On
the contrary, our Y-Net aims to explore the pixel-wise discrimi-
native information by segmentation guidance, which pays more
attention on the pathologically abnormal regions. Second, exist-
ing instance retrieval methods using local aggregation usually
locate local regions in an unsupervised or weakly-supervised
manner, which ignores the label information, while our Y-Net
exploits class labels to locate the discriminative regions. The
main contributions of this work are summarized as follows:

1) To combat ambiguity of pathologically abnormal regions
in medical instance retrieval, we present a novel Y shape
deep network, named Y-Net, encoding images into com-
pact hash-codes. Our Y-Net can improve the differenti-
ating ability of the hash-codes by exploiting the visual
features unique to pathologically abnormal regions.

2) Y-Net unifies classification and pixel-wise segmentation
training to learn good semantic-separability and spatial-
discriminability convolutional features. The segmenta-
tion branch learns subtle spatial differences to avoid the
SPDD problem while the classification branch locates the
discriminative regions by class-aware semantic informa-
tion to overcome the DPSD problem.

3) Extensive experiments on two public medical datasets
demonstrate that our proposed Y-Net can further improve
the retrieval performance compared to the state-of-the-art
instance retrieval methods. Our code and model have been
released in https://github.com/fjssharpsword/ Y Net.

The rest of this work is organized as follows: Section II
discusses related works. Section III describes our methodology
in detail. Section IV extensively evaluates the proposed method
on two medical images datasets. Section V gives concluding
remarks.

Il. RELATED WORKS

This section gives some related works that have contributed
to instance-level retrieval and discuss current research progress
of medical instance retrieval.

A. Instance-Level Retrieval

Hashing methods can be divided into data-independent meth-
ods and data-dependent methods. The data-independent meth-
ods [20], [21] learn hashing functions in a two-stage manner
from hand-crafted features such, and the hash-codes learning
procedure is independent of the image features, which may lead
to sub-optimal performance. The data-dependent methods, also
called learning-based hashing methods, can be further catego-
rized into [22]: (1) shallow learning-based hashing methods, like
metric hashing forests [23], and kernel sensitive hashing [24];

Authorized licensed use limited to: Southern University of Science and Technology. Downloaded on November 26,2024 at 15:20:06 UTC from IEEE Xplore. Restrictions apply.


https://github.com/fjssharpsword/YNet

FANG et al.: COMBATING AMBIGUITY FOR HASH-CODE LEARNING IN MEDICAL INSTANCE RETRIEVAL

3945

(2) deep learning-based hashing methods, like image inpainting-
based compact hash-code learning [25], and deep hashing net-
work [26]. In contrast to the data-independent methods, they ex-
tract global features for hashing in an end-to-end manner. Early
works [27], [28] for instance-level retrieval rely on hand-crafted
local descriptors such as SIFT [29] and SURF [30]. Prior to deep
learning, these works based on local features extraction, then
aggregated into a global vector [31], [32]. The instances relevant
to a query are discovered in the candidate images for similarity
search by matching local descriptors. However, hand-crafted
local features are vulnerable to non-rigid deformations and
heavy viewpoint changes. Due to the promising performance in
computer vision, CNN-based approaches have been introduced
to instance-level retrieval. Instead, the global vector is extracted
by a single forward-pass through a CNN, in which the extraction
and aggregation steps are not separated. Existing deep hashing
methods [33], [34] can be grouped into this category using
feature embedding tailor features from fully-connected layers
for hash-codes generating. The representative methods include
deep pairwise-supervised hashing (DPSH) [7], deep supervised
hashing (DSH) [35], and deep residual hashing (DRH) [36].
Since convolutional features have been found to be reasonably
discriminative [37], recent CNN-based approaches have shifted
to concentrate on feature aggregating rather than feature embed-
ding. CNN-based approaches aggregating convolutional feature
maps as global image representation can be roughly divided into
two categories.

The first category is the works encoding the activations of
a convolutional layer by weighted aggregation. These works’
key idea is to assign different weights to different regions’
activations in feature maps after global convolutional layers
generate. SPoC [8] showed that a simple spatial pooling on the
convolutional layer outperformed fully-connected layers, and
the power of this representation could be enhanced by applying
the Gaussian center prior scheme to weight the contribution
of the activations before aggregation. Following a similar idea,
CroW [38] proposed a non-parametric spatial- and channel-wise
weighting method for focusing on salient regions. Unlike the
spatial weighting scheme, class activation maps (CAMs) [39]
are employed for calculating semantic-aware weights of a con-
volutional feature map. Based on the bags of local convolutional
features (BLCF) [40], BLCF-SALGAN [41] build an efficient
image representation by saliency weighting.

The second category is the works performing region analy-
sis using convolutional features. Unlike the first category, this
category first generates regions’ convolutional features after
region proposal, then aggregates them into global features. The
representative work is regional maximum activation of convolu-
tions (R-MAC) [42], which generated a set of regional vectors
by performing spatial max-pooling within a particular region
and aggregates features from several local regions into a single
compact feature. Gordo et al. [43] improved over the original
R-MAC encoding by explicitly learning a region proposal net-
work [44] and training in an end-to-end framework with a triplet
loss. Laskar et al. [45] used a saliency measure directly derived
from the convolutional features to weigh the contribution of
the regions of R-MAC before aggregation. Similar to R-MAC,
Cao et al. [46] proposed a method to derive a set of base

regions directly from the convolutional layer, followed by a
query adaptive re-ranking strategy. DeepVision [47] extracted
region-level features from the bounding boxes generated by the
object detection framework. Regional attention [37] proposed a
context-aware regional attention network that weighs an atten-
tive score of a region considering global attentiveness.

B. Medical Instance Retrieval

Recently, deep hashing methods using feature embedding
on the fully-connected layer have also been widely proposed
for medical instance retrieval, such as deep multiple instances
hashing for tumor assessment [11], deep residual hashing for
chest X-ray images [36], order-sensitive deep hashing method
for multi-morbidity medical image retrieval [22], deep disen-
tangled momentum hashing for Neuroimage Search [16], etc.
Although the prior works have facilitated medical instance re-
trieval’s prosperity, pathologically abnormal regions’ manifesta-
tion ambiguity is challenging for current deep hashing methods.
Recent studies [37], [39], [46] have shown that using feature
aggregating on the convolutional features achieves promising
performance in instance-level retrieval. Following this direction,
our work improves the current deep hashing method to combat
pathologically abnormal regions’ ambiguity in medical instance
retrieval.

In this work, the improvement for the current deep hashing
methods includes:

e Unlike the current deep hashing methods jointly learn-
ing image descriptors and hash-codes, our work first
learns convolutional features from image spaces by super-
vised training, then aggregates them as hash-codes. The
learned convolutional features and following generated
hash-codes can effectively preserve the differentiating
information of pathologically abnormal regions.

e Inspired to CAMs [39] and R-MAC [42], we endow the
class-aware information to the R-MAC descriptors by
classification training. The R-MAC descriptors related to
classes can enhance their differentiating ability and help
to avoid the SPDD problem.

® Motivated by regional attention [37], we adopt feature
pyramid networks (FPN) [48] to exploit multi-scale patho-
logically abnormal regions by pixel-wise segmentation
training. The subtle differences are encoded into the con-
volutional features to overcome the DPSD problem.

We detect if pathologically abnormal regions are presented
in each image with classification training, and we locate patho-
logically abnormal regions using activations with the help of
segmentation training. In the end, the convolutional features,
having learned class-aware information and subtle spatial dif-
ferences, are mapped into the hash-codes. Based on the class
labels and pixel-wise masks, we argue that our work is a ben-
eficial exploration to combat pathologically abnormal regions’
ambiguity in medical instance retrieval.

[ll. METHODOLOGY

Our Y-Net aims to generate highly distinctive hash-codes from
the learned convolutional features. The hash-codes should meet
three requirements: (a) the query image should be encoded close
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A novel deep framework for medical instance retrieval. We feed an image to the main branch, followed by the R-MAC branch (right) for

classification training and the FPN branch (left) for segmentation training. The class-aware semantic information of pathological regions from the
R-MAC branch and the spatially subtle differences of pathological regions from the FPN branch is effectively learned in the convolutional feature
maps in the core node (red rectangle). The convolutional feature maps are mapped into the hash-codes via feature aggregating in the test stage.
Our framework’s shape is similar to a Y shape, including the main branch, the R-MAC branch, and the FPN branch, called Y-Net.

to positive images with the same instance and far from negative
images without the same instance in the hashing space; (b)
the class-aware semantic information and subtle differences of
pathologically abnormal regions should be effectively encoded
in convolutional features; (¢) The convolutional features should
be effectively aggregated to the compact hash-codes to preserve
the learned visual cues. This section will elaborate on our Y-Net,
including the main branch, R-MAC branch, FPN branch, and the
coupled loss function.

A. Framework Overview

Each image is represented by an instance-invariant feature
vector, i.e., hash-code. As shown in Fig. 2, we present a deep
learning framework, called Y-net, to generate distinctive hash-
codes from convolutional features. Our Y-Net contains three
parts, main branch, R-MAC branch (right), and FPN branch
(left). In the training stage (double arrow), we input an image
into the main branch and feed-forward to the core node (red
rectangle). The core node is a convolutional layer, followed
by the R-MAC branch and the FPN branch. In the R-MAC
branch, the classification loss minimizes intra-class distance
and maximize inter-class distance. The inter-class separation
can help avoid SPDD problem. But, to overcome the DPSD
problem, the intra-class distance needs to be preserved but not
minimized. The FPN branch can locate intra-class differences
by pixel-wise segmentation training to balance the reduction
of intra-class distance in the R-MAC branch. The core node
learns the class-aware semantic information of pathological
regions from the R-MAC branch for differentiating the same
manifestation of different diseases. Simultaneously, the spatially

subtle differences of pathological regions from the FPN branch
are encoded into the core node to locate the same disease’s subtle
differences at different stages. After the core node absorbing the
visual cues from the R-MAC branch and the FPN branch in the
training stage, we can generate hash-codes from the learned core
node by feature aggregation in the test stage (single arrow).

B. Main Branch

The image encoding pipeline of the main branch is depicted
as follows:

® Training Stage. The input image I with a resolution 3 X
256 x 256 is feed-forwarded into the main branch. The
main branch computes a feature hierarchy consisting of a
bottom-up block at three scales with a scaling step of 2. At
each scale, we use the feature activations output of bottom-
up block [49] to get a receptive field. The three bottom-up
blocks are merged into the FPN branch by addition. In the
core node of the main branch, the convolutional feature
maps X € RE*H*W can be arranged in a tensor of the
size C' x H x W, where H and W denote the height and
width of each feature map, and C' denotes the number of
feature maps (or channels) in the convolutional layer. In

a convolutional layer, the activations at the same spatial
location across all feature maps can be composed into a
C-dimensional local descriptor for a certain image region.
Compared to the activations of the fully-connected layer,
the convolutional features retain the spatial information
of local image descriptors and are essentially similar to
the traditional hand-crafted local features [50], [51]. The
convolutional feature maps X are further feed-forwarded
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into the R-MAC branch and the FPN branch. Based on the
classification and segmentation training, the semantic and
spatial information of pathological regions is encoded into
the convolutional feature maps in the feedback process.

e Test Stage. Based on the pre-trained Y-Net, an image
with a resolution 3 x 236 x 256 is feed-forwarded into
the main branch and terminated in the core node. The
core node is the conjunct point of a Y shape and is the
core component in the framework of Y-Net. We apply
feature aggregation to generate a k-bits hash-code from the
learned convolutional feature maps X with C' x H x W
in the core node. Based on the existing works, the feature
aggregation does not take part in the training and has been
found to be more capable of preserving the discriminative
information than the feature embedding. Considering the
convolutional feature maps X with C' x H x W have
learned the visual cues of pathological regions effec-
tively, we convolute the size of C' x H x W into the size
of ¢ X h x w without any weighting strategy. Then the
three dimensions vectors further are squeezed into one
dimension; its size equals the hash-code size of k-bits.
Such a convolution process can aggregate feature maps
of various sizes in three dimensions, such as 1 X 8 x 8
and 128 x 1 x 1. Lastly, we apply the hyperbolic tangent
function to generate the value between —1 and 1, following
by signed as binary hash-code. At this step, we do not
introduce any weighting strategy on feature aggregation
because the convolutional feature maps have learned the
visual cues of pathological regions effectively.

C. R-MAC Branch

The R-Mac branch contains a convolutional layer using 3 x 3
filters and followed by batch normalization [52], then an R-MAC
block generating a feature vector of length 512. The feature
vector is mapped into a linear layer after the Lo normalization.
The length of the linear layer is the number of classes. The R-
MAC block generates a compact representation by aggregating
multiple regions at different scales. By classification training,
the highly activated regions can correspondingly respond to the
semantic information of the belonging class. The pipeline of the
R-MAC block is summarized as follows:

® Based on a convolutional layer with 512 x 8 x 8, we
sample square regions with a region size, I, of a specific
scale s in a sliding window manner of 0.4 overlap between
neighbor windows, forall s = 0, .. .,S. The region size at
a specific scale can be calculated as:

Rs =2 x min(W,., H,.)/(s + 2), (1)

where W, and H, are width and height of the feature map
in the convolutional layer. In our Y-Net, with W,. = 8 and
H, =8, we set S = 3, then we totally get sample region
of 14.

e After sampling the regional feature maps, we perform a
max-pooling for all regional feature maps of 14. Each
regional feature maps generate a feature vector with 512,
the same as the channel’s size. Last, we aggregate all
feature vector of sample regions in the whole image as a

B

(b)

(c)

Fig. 3. Feature maps of the R-MAC branch. We calculate the mean
value along the channel axis of the convolutional features with 512 x
8 x 8, then visualize the mean value: (a) the feature map with 8 x 8, (b)
the color map resized to the size of the mask image with 256 x 256, and
(c) the overlay map combined the color map with the mask image.

o of chest X-ray :
# nodule of chest X-ray
. .
(a)

Image

global feature vector with 512 dimensions, named R-MAC
descriptor used as a discriminative image representation.
In the pipeline of R-MAC, the local features from a certain
convolutional layer are max-pooled across several multi-scale
overlapping regions, obtained from a rigid grid covering the
whole image, similar in spirit to spatial pyramids, producing a
single feature vector per region. Then these region descriptors
are sum-aggregated and Lo— normalized into a global image
representation. The discriminative global image representation
is a compact vector whose size is independent of the size of the
image and the number of regions. The region pooling is differ-
ent from a spatial pyramid. The latter concatenates the region
descriptors, while the former sum-aggregates them. Comparing
the R-MAC descriptors of two images with a dot-product can
then be interpreted as a many-to-many region matching.
R-MAC has been known for effective and efficient perfor-
mance in image retrieval. Nonetheless, the main issue of R-MAC
is that all sampled regions are equally treated without consider-
ing their varying importance. When aggregating their regional
feature vectors, all regions construct their equal attentiveness
to the last R-MAC descriptor. To overcome this problem, we
integrate R-MAC in our Y-Net for supervised training to avoid
the class-agnostic problem of the descriptors in R-MAC. We
argue that the convolutional layer activations before the R-MAC
block can respond to the semantic information during classifica-
tion training. The class-based semantic information is conveyed
to the sample regions in the R-MAC block. Thus the different
regions responding to the classification devote their varying
contribution to generating the R-MAC descriptor. The learned
R-MAC descriptor containing class-based semantic information
can help address the SPDD problem by differentiating regions
with a similar texture. Put an example of a chest X-ray, although
two chest nodules with different sizes are the same texture, they
are labeled benign and malignant and diagnosed with different
diseases, respectively. As shown in Fig. 3, the two chest nod-
ules that belonged to different classes vary differently in the
learned feature maps of the convolutional layer. By training the
R-MAC branch, the R-MAC descriptor can exploit the class-
based semantic information of chest nodules and feedback to
the convolutional layer in the R-MAC block, then the core node
of the main branch.
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D. FPN Branch

Pixel-wise segmentation help extract features that emphasize
the pathological abnormal regions. Beneficial from the segmen-
tation training, the FPN branch explores the multi-scale subtle
differences of pathological regions at different stages and then
give feedback to the core node in the main branch. FPN leverages
the convolutional features from low to high levels to extract
multi-scale spatial information by building a pyramidal feature
hierarchy. FPN has been a criteria component in the network
of object detection and shows its powerful feature extraction
capability to achieve higher accuracy [53], [54]. The multi-scale
spatial information of pathological regions helps generate dif-
ferentiating features in medical instance retrieval. In our Y-Net,
we leverage the FPN components to extract multi-scale spatial
information from medical images for semantic segmentation by
setting the label of mask images semantically. The structure of
the FPN branch is introduced as follows:

¢ Following the core node in the main branch, the FPN
branch provides two convolutional layers and three top-
down blocks. Last, the FPN branch generates a predicted
mask image for pixel-wise segmentation training. The seg-
mentation loss is feedback to the FPN branch and the main
branch to help exploit the multi-scale subtle differences of
pathological regions at different stages.

¢ In the feed-forwarding process, corresponding to the three
bottom-up blocks {32 x 64 x 64 as bl, 64 x 32 x 32
as b2, 128 x 16 x 16 as b3} in the main branch, three
top-down blocks {32 x 16 x 16 as t3, 32 x 32 x 32 as
t2, 32 x 64 x 64 as tl} in the FPN branch merge them
by element-wise addition. The outputs of two bottom-up
blocks {b2, b3} convolute into 32-dimensions channel.
The output of the convolutional layer before block {t3} and
two top-down blocks {t2, t3} are resized into twice times
their width and height by bi-linear up-sampling. Then, the
convolutional layer before top-down block {t3} and the
bottom-up block {b3}, the top-down block {t3} and the
bottom-up block {b2}, the top-down block {t2} and the
bottom-up block {bl}, these pairs with the same spatial
size are merged by element-wise summation. The addition
operation of these three pairs generate the top-down blocks
{t3, t2, t1} successively. Last, the top-down block {t3}
convolutes into the size of the mask image.

In the main branch, the features of bottom-up blocks with
lower-level information are more accurately localized by sub-
sampling. In the FPN branch, the features of top-down blocks
with higher-level information have a stronger spatial resolution
by up-sampling. The features of top-down blocks can be en-
hanced by merging the features from bottom-up blocks. Based
on the segmentation training, the learned pyramidal features
can learn multi-scale spatial information and are feedback to
the main branch’s core node. As shown in Fig. 4, the subtle
CDR differences between two glaucoma images can be observed
on the learned feature maps. The minor difference reflects the
different information on different CDRs of same glaucoma,
and the difference is encoded into the core node. Based on the
pixel-wise segmentation training, we argue that the multi-scale
subtle differences of pathological regions at different stages can
be learned by the FPN branch to tackle the DPSD problem.
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Fig. 4. Feature maps of the FPN branch. We calculate the mean value
along the channel axis of the features of the three top-down blocks {t3,
t2,t1}, then visualize the mean value: (a) the feature map of the top-down
block {t3} with 16 x 16, (b) the feature map of the top-down block {t2} with
32 x 32, and (c) the feature map of the top-down block {t1} with 64 x 64.
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E. Coupled Loss

In Y-Net, we integrate the classification task in the R-MAC
branch and the segmentation task in the FPN branch to learn the
semantic and spatial information of pathological regions simul-
taneously. To balance the two tasks’ loss, we design a coupled
loss to unify the classification and segmentation learning. In
general, the gradient size is different in the convergence process
of different tasks, and the sensitivity to different learning rates is
also different. Unifying the scale of different loss functions can
prevent the loss items with small gradients from being covered
by the loss items with large gradients. Unifying the losses to the
same order of magnitude can help improve the generalization of
the learned features [55]. The coupled loss function is defined
as:

L=wl;+(1-w)L,, 2)

where £, is the circle loss [56] for the classification training,
L; denotes the cross-entropy (CE) loss for the pixel-wise seg-
mentation training, and w is the weight factor. In the circle loss,
each similarity score is given different penalties according to its
distance to the optimal effect. In the R-MAC branch, instead of
the CE loss, we adopt the circle loss to preserve the class-aware
similarity of pathological regions and help prevent minimizing
intra-class distance.

Based on the coupled loss unifying the classification loss and
segmentation loss, the main branch’s core node can effectively
retain the multi-scale spatial information from segmentation
training and the class-aware semantic information from clas-
sification training simultaneously. The convolutional feature
maps from a certain convolutional layer can be viewed as an
array of local features sampled from a dense sampling grid. In
Fig. 5, the pathological region is the cup and disk of glaucoma.
By observing the core node’s feature maps, the FPN branch
focuses on exploring the pathological region (cup and disk),
and the R-MAC branch concerns the highly activated region of
the whole image (glaucoma). With the help of the coupled loss
balancing the two losses, the Y-Net row’s feature maps confirm
the effectiveness of preserving the information from the R-MAC
branch and the FPN branch. Hence, the learned convolutional
features of the core node can be used to generate hash-codes to
combat pathological regions’ ambiguous manifestations.
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Fig. 5. Feature maps of the core node in the main branch. We calcu-
late the mean value along the channel axis of the convolutional features
with 256 x 8 x 8, then visualize the mean value: (a) the feature map
with 8 x 8, (b) the color map resized to the size of the input image with
256 x 256, and (c) the overlay map combined the color map with the
input image.
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[V. EXPERIMENTS AND ANALYSIS

To evaluate the performance of our proposed Y-Net, we
conduct extensive experiments on two public medical image
datasets to verify our method’s effectiveness in combating the
ambiguous manifestation of pathological regions. In this section,
we will introduce the experimental details and analyze the
experimental results.

A. Datasets

Fundus [57] contains 650 annotated retina images. Each
image is tagged with classification information and manually
segmented the result of optic disc and cup. This dataset is ob-
tained from a population-based study and is therefore suitable for
evaluating glaucoma screening performance. In this dataset, 168
images from glaucomatous eyes and 482 images from normal
eyes are classified. Manual CDR computed from the manually
segmented disc, and cup boundaries are necessary for segmen-
tation training. Based on the classification and segmentation
labels, we split this dataset into the train set and the test set
by ratio 9 : 1. The test set of 65 consists of 16 glaucoma images
and 49 normal images, and the train set of 585 images covers
152 glaucoma images and 433 normal images.

JSRT [58] provides 154 nodule and 93 non-nodule chest
X-ray images. Each nodule case contains a nodule only, which
is rated as benign or malignant by 20 different radiologists. A
detailed delineation of the segmentation’s nodule is publicly
available to train a lung segmentation [59]. This dataset anno-
tates the lesion position and responding diagnosis. For example,
the lesion region of a malignant image is located on the left
lung’s upper lobe and diagnosed as lung cancer. The annotation

images for segmentation tasks are binary images in which pixels
are either 255 for the foreground or O for the background. We
sample 138 images containing 89 malignant nodules and 49
benign nodules to form a train set and 16 images containing 11
malignant nodules and 5 benign nodules to form a test set. The
ratio of the train set and the test setis 9 : 1.

B. Experimental Setups

We mainly use mean average precision (mAP) for quantitative
evaluation. In the returned list, nAP averages the ranks of images
similar to the query image to measure the rank quality. The mAP
is usually adopted for evaluating the retrieval performance [1],
[2], and is calculated as follows:

Y1 P(k) - rel(k)
. = , ©)

where I? denotes the number of similar results for the current
query image, P(k) denotes the precision of top-k retrieval
results, rely is a binary indicator function equaling 1 when the
k-th retrieved results is similar to the current query image and 0
otherwise, and n denotes the total number of retrieved results.
Based on the class labels and the aim of instance retrieval assist-
ing the clinician’s own decision-making by reviewing similar
cases, the success criteria of similar images are defined as that
the two images have similar pathological patterns.

Y-Net is compared against several representative approaches
of instance-level retrieval. The comparative approaches are cate-
gorized as: weight feature aggregating on convolutional features,
regional feature aggregating on convolutional features, and fea-
ture embedding from a full-connected layer.

* Weight feature aggregating. CroW [38] estimates a spa-
tial weighting of the features as a combination of convo-
lutional feature maps across all channels of the layer. Fea-
tures at locations with salient visual content are boosted
while weights in non-salient locations are decreased. To
explicitly leverage semantic information, CAM [39] ob-
tains semantic-aware weights for convolutional features
by exploiting the predicted classes. CAM generates a set
of spatial maps highlighting the contribution of the regions
within an image. Each map is used to weigh the convo-
Iutional features and generate a set of class vectors that
are aggregated as the region vectors over the fixed region
strategy of R-MAC. CAM inspires our R-MAC branch of
Y-Net. BLCF [41] builds an efficient image representa-
tion by combining saliency weighting over convolutional
features aggregated by using a large vocabulary with a bag
of words (BoW) model [60]. SOLAR-Local [61] focuses
on second-order spatial information to learn local patch
descriptors without extra supervision. Based on the feature
weighting strategy [62], it combines the second-order
spatial attention and the second-order descriptor loss to
improve image features for retrieval and matching.

* Regional feature aggregating. R-MAC [42] is an ag-
gregation method for convolutional features to generate a
set of regional vectors by performing spatial max-pooling
within a particular region. Building on the R-MAC de-
scriptor, R-MAC + RPN [43], [62] can enhance the ability
to focus on relevant regions in the image by replacing the

AP =
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rigid grid with a region proposal network (RPN) trained
to localize regions of interest in images. Regional At-
tention [37] presents a context-aware regional attention
network for tackling the problem of region-based feature
aggregation suffering from the background clutter and
varying importance of regions, especially in R-MAC, by
weighting an attentive score of a region. Deep Vision +
SOLO [47] is trained for instance-level retrieval of image-
and region-wise representations pooled from an object
detection CNN. In this experiment, we take advantage of
the object proposals learned by SOLO [63] and their as-
sociated convolutional features to build an instance search
pipeline.

¢ Feature embedding. Three deep hashing methods us-
ing feature embedding are used to build benchmarks for
our Y-Net, including DPSH [7], DSH [35], DRH [36],
DDMH [16]. DPSH performs simultaneous feature learn-
ing and hash-code learning with deep neural networks
by maximizing pairwise similarities. Inspired by DPSH,
DSH proposes a triplet label-based deep hashing method to
maximize the given triplet labels’ likelihood. DRH offers
good separability of classes in hashing space while pre-
serving semantic similarities in local embedding neighbor-
hoods for supervised hashing of medical images through
residual learning. DPSH and DSH use AlexNet [64] as the
backbone. Recently, the residual block [49] has been used
popularly as the backbone in deep hashing methods such
as DRH and shows the advantage of feature extraction. In
our Y-Net, the main branch also uses the residual block
as the backbone. DDMH proposes a unique disentangled
triplet loss to effectively push positive and negative sam-
ple pairs by desired Hamming distance discrepancies for
hash-codes with different lengths.

Our Y-Net is implemented under the PyTorch framework, and
experiments are run on Geforce RTX 2080 Ti. In our work, the in-
dexing and similarity calculation for evaluation uses Faiss [65],
a library for efficient similarity search and clustering of dense
vectors. We use the mini-batch stochastic gradient descent with
0.9 momentum. The mini-batch size of images is fixed as 32,
and the weight decay parameter is 0.001. All deep models are
trained from scratch with 500 epochs. It spends approximately 3
hours for training our Y-Net. The pixel-wise cross-entropy loss
is used in the segmentation task. The circle loss [56] is used for
classification training by using cosine similarity and setting a
scale of 32, a margin of 0.25. The weight factor w in the coupled
loss is initially set as 0.5. We use the 5-fold cross-validation
to select the best classification and segmentation model. The
parameters of comparative methods are set according to their
implementation details in the corresponding papers, and the best
performance is reported. Based on top-10 retrieval results, we
investigate our Y-Net’s performance over hash-code with lengths
of 36, 64, 128, 256, respectively. According to Table I, with
the hash-code lengthen, the performance can correspondingly
improve at the cost of storage and search efficiency. As a
trade-off between performance and search cost, we report all
the performances over 64-bits hash-code for our Y-Net.

TABLE |
MAP OF Y-NET OVER THE VARYING LENGTH OF HASH-CODES ON THE
FUNDUS AND JSRT DATASETS

Datasets | mAP@36 | mAP@64 | mAP@128 | mAP@256
Fundus 0.5903 0.6102 0.6266 0.6308
JSRT 0.5361 0.5518 0.5732 0.5809

C. Experimental Results

The following research questions will be answered by ana-
lyzing experimental results:

1) Does our proposed Y-Net outperform the state-of-the-art
methods on retrieval performance in medical instance
retrieval?

2) Can our proposed Y-Net help to combat the ambiguity of
pathological regions in medical instance retrieval?

3) What are the effectiveness of the R-MAC branch, the
FPN branch, and the coupled loss in our proposed Y-Net
framework?

4) RQ4 How is the retrieval efficiency of our proposed Y-
Net?

1) Quantitative Analysis (RQT1): The performance of the
mAP over the returned list of 5, 10, 20, and 50 on Fundus and
JSRT datasets are reported in Table II , respectively. On the
whole, when the returned list lengthens, all methods’ perfor-
mance declines to some extent. Our Y-Net all achieves signif-
icant gains of mAP over the varying returned list on the two
datasets. Experimental results on the Fundus dataset show that
Y-Net outperforms the second-highest methods (underline) by
7.60%, 11.18%, 9.35%, 7.26% correspond to the different num-
ber of the returned list. Y-Net also achieves the best performance
on the JSRT dataset compared to the other methods. For the
methods obtaining the second-highest performance, CAM is a
weighing feature method aggregating on convolutional features,
and DRH is a method of feature embedding. This demonstrates
that the methods of regional feature aggregating on convolu-
tional features may lose related information between regions
after region proposals. This loss prevents them from obtaining
better performance. Among methods of weight feature aggre-
gating, SOLAR-Local yields good performance by exploiting
the second-order spatial information. CAM can achieve better
performance than SOLAR-Local by exploiting class semantic
information. The retrieval performance on the Fundus dataset is
higher than that on the JSRT dataset by 10.58% on the returned
list of 10. The reason for this gap has two points. The shortage of
specificity is the main challenge for chest X-ray image analysis
tasks. The JSRT dataset only provides lung masks but not lesion
masks; those non-lesion regions in the lung mask may affect the
discriminative information learning.

Compared to DRH, CAM acquires a better performance over
the returned list of 5 and 10. This demonstrates that it effectively
explore pathological regions and weigh their activations by
exploiting the correlation between class labels and pathological
regions. Inspired to CAM, the R-MAC branch in our Y-Net
contributes to increasing the retrieval performance by focusing
on the pathological regions and weights these regions with
class activations. Benefiting from adopting the residual block
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TABLE Il
MAP OVER THE VARYING NUMBER OF THE RETURNED LIST ON THE FUNDUS AND JSRT DATASETS
. Fundus JSRT
Methods Dim top-5 top-10 | top-20 | top-50 top-5 top-10 | top-20 | top-50
CroW [38] 512 0.5223 | 0.4681 | 0.4471 | 0.4366 | 0.4993 | 0.4705 | 0.4396 | 0.4189
CAM [39] 2048 | 0.5917 | 0.5488 | 0.4982 | 0.4609 | 0.5611 | 0.5124 | 0.4497 | 0.4187
BLCF [41] 1000 | 0.4890 | 0.4793 | 0.4463 | 0.4216 | 0.4701 | 0.4356 | 0.4096 | 0.3903
SOLAR-Local [61] 1024 | 0.5701 | 0.5274 | 0.4766 | 0.4482 | 0.5443 | 0.4987 | 0.4264 | 0.4051
R-MAC [42] 512 0.5016 | 0.4884 | 0.4585 | 0.4528 | 0.4682 | 0.4191 | 0.3965 | 0.3812
R-MAC + RPN [62] 3072 | 0.5483 | 0.5024 | 0.4685 | 0.4446 | 0.4805 | 0.4461 | 0.4098 | 0.3951
Regional Attention [37] 2048 | 0.5674 | 0.5279 | 0.5070 | 0.4854 | 0.4984 | 0.4621 | 0.4289 | 0.4069
Deep Vision + SOLO [47] | 3072 | 0.5486 | 0.5001 | 0.4889 | 0.4815 | 0.5123 | 0.4756 | 0.4358 | 0.4123
DPSH [7] 64 0.5044 | 0.4693 | 0.4451 | 0.4270 | 0.4581 | 0.4203 | 0.3891 | 0.3677
DSH [35] 64 0.5052 | 0.4882 | 0.4788 | 0.4734 | 0.5487 | 0.4921 | 0.4578 | 0.4332
DRH [36] 64 0.5712 | 0.5435 | 0.5322 | 0.5203 | 0.5306 | 0.4912 | 0.4651 | 0.4498
DDMH [16] 32 0.5231 | 0.5051 | 0.4962 | 0.4802 | 0.5396 | 0.4869 | 0.4421 | 0.4284
Y-Net (ours) 64 0.6367 | 0.6102 | 0.5820 | 0.5581 | 0.6013 | 0.5518 | 0.5284 | 0.4976
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JSRT Dataset

Malignant (upper lobe)

PN-A

Malignant (upper lobe) Benign (upper lobe)

top-1

top-2

Fig. 6.

é
£

Malignant (lower lobe) Malignant (upper lobe) Benign (upper lobe)

top-3 top-4 top-5

Ranking of the top-5 returned list on the JSRT dataset. We query a malignant image and obtain the ranking of the top-5 returned list for

Y-Net and DRH, respectively. Each image shows the position of the chest nodule labeled manually.

as the backbone, DRH is superior to CAM over the returned
list of 20 and 50. To further improve the performance over
the longer returned list, we need to exploit spatially subtle
differences of pathologically abnormal regions with the help of
pixel-wise segmentation training in the FPN branch. Due to the
differentiating ability of the subtle differences in pathological
regions, our Y-Net surpasses DRH over the returned list of 20
and 50 compared to CAM. In summary, three points contribute
to the performance of our Y-Net. (1) The R-MAC branch learns
the class-aware semantic information of pathological regions.
(2) The FPN branch explores the multi-scale subtle spatial
information of pathological regions. (3) The main branch uses
the residual block as the backbone.

2) Qualitative Analysis (RQ2): Lung nodules are small
masses of tissue in the lung and quite common. They appear as
round, white shadows on a chest X-ray. Lung nodules are usually
about 0.2 inches (5 millimeters) to 1.2 inches (30 millimeters)
in size. A larger lung nodule, such as 30 millimeters or larger,
is more likely to be cancerous than a smaller lung nodule. The
regions of chest nodules in X-ray images are hard to differen-
tiate malignant or benign according to the spatial information,
including texture and size. So this is a typical SPDD problem.

As shown in Fig. 6, our Y-Net returns more malignant images
and ranking ahead than DRH by querying a malignant image.
Based on the FPN branch exploiting spatially subtle differences
of nodule regions, the R-MAC branch cooperatively encodes
the class-aware semantic information of pathological regions
into the hash-codes. By exploiting the correlation between class
labels and pathological regions, the R-MAC branch can address
the SPDD problem in medical instance retrieval. In fact, the
R-MAC branch weighs the regional of maximum activation by
conveying the class-based semantic information to the R-MAC
descriptor and the convolutional features. The class-weighted
regional of maximum activation can differentiate the same per-
formance of different diseases of medical images.

The size of CDR computation from color fundus images is
the main clue for glaucoma diagnosis [66]. The different size
of CDR denotes different grading of glaucoma. It is useful for
clinicians to find the most similar images with closer CDR sizes
to make a medico-decision. As shown in Fig. 7, compared to the
DRH, Y-Net returned more glaucoma images with closer CDR
sizes and ranked ahead by querying a glaucoma image. Accord-
ing to this experimental result, we argue that the FPN branch can
effectively encode the subtle differences of pathological regions
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Ranking of the top-5 returned list on the Fundus dataset. We query a glaucoma image and obtain the ranking of the top-5 returned list for

Y-Net and DRH, respectively. Each image shows its Cup to Disk Ratio (CDR) size labeled manually.

TABLE Il
MAP OF BRANCHES OF Y-NET OVER THE VARYING NUMBER OF THE RETURNED LIST ON THE FUNDUS AND JSRT DATASETS
Branches Fundus JSRT
top-5 top-10 | top-20 | top-50 top-5 top-10 | top-20 | top-50
Y-Net w/o FPN and R-MAC branch | 0.5001 | 0.4871 | 0.4679 | 0.4575 | 0.5324 | 0.4856 | 0.4509 | 0.4297
Y-Net w/o FPN branch 0.5881 | 0.5656 | 0.5443 | 0.5033 | 0.5325 | 0.5114 | 0.4831 | 0.4501
Y-Net w/o R-MAC branch 0.5561 | 0.5179 | 0.4854 | 0.4536 | 0.5210 | 0.4914 | 0.4597 | 0.4285
Y-Net w/o Circle loss 0.6061 | 0.5879 | 0.5554 | 0.5136 | 0.5684 | 0.5291 | 0.4976 | 0.4703
Y-Net 0.6367 | 0.6102 | 0.5820 | 0.5581 | 0.6013 | 0.5518 | 0.5284 | 0.4976

into the hash-codes to address the DPSD problem by mining
the multi-scale spatial information. The FPN branch can locate
pathological regions’ subtle differences at different stages of the
same disease based on the pixel-wise segmentation training. In
essence, the FPN branch weights the pathological regions by
segmentation training. The weighted pathological regions can
be encoded as the most discriminative parts of the hash-codes
to differentiate the same disease’s different manifestations at
different stages.

Our Y-Net’s R-MAC branch exploits the class semantic in-
formation to weigh regions of maximum activation to tackle
the SPDD problem. Apart from the same pathological criteria
evaluation (benign and malignant), we also apply the disease
label to evaluate the performance to embody the effectiveness
of tackling the SPDD problem. The large disease label consists
of lung cancer, granuloma, cryptococcosis, inflammatory mass,
etc. The fine disease label for lung cancer includes adenocarci-
noma, large cell carcinoma, small cell carcinoma, etc. On the
returned list of 10, our method outperforms CAM by 8.12%
average precision on diagnosing disease. This demonstrates that
our method can effectively differentiate the similar manifesta-
tion of different diseases. Our Y-Net’s FPN branch explores the
spatially subtle differences of the lesion region to overcome
the DPSD problem. Regarding the DPSD problem, we apply
average CDR to evaluate the performance on differentiating
the different manifestations of the same disease in different
stages. Our Y-Net yields the average CDR gap of 0.2157 between
the query image and the retrieved images, while CAM obtains
0.3521. The convolutional features in the core node of the main

branch learn the information from both branches to promote
hash-codes’ discriminative ability.

3) Ablation Study (RQ3): To further research the R-MAC
branch and FPN branch’s contribution, we conduct an ablation
study by cropping the corresponding branch of Y-Net. As shown
in Table III, Y-Net without the FPN branch can achieve better
performance than Y-Net without the R-MAC branch, and Y-Net
achieves convincing performance by unifying the FPN branch
and R-MAC branch. Without the FPN branch, Y-net can achieve
competitive performance compared to CAM and DRH. Upon the
R-MAC branch, Y-Net can obtain a significant gain by adding
the FPN branch. This demonstrates that the R-MAC branch
can differentiate pathological regions’ similar manifestations
by weighing the regional of maximum activation based on the
classification training. The added gain benefits from the FPN
branch, which exploits the subtle differences of pathological
regions by mining the multi-scale spatial information based on
the segmentation training. As shown in Fig. 7, the glaucoma
images ranked ahead are closer to the query image in CDR size.
This also confirms the FPN branch’s effectiveness in preventing
the R-MAC branch from minimizing the intra-class distance.
Based on this joint learning scheme, the core node in the main
branch absorbs the class-aware semantic information from the
R-MAC branch and spatially subtle differences from the FPN
branch, then are mapped into the hash-codes. The learned hash-
codes can be used to combat the ambiguous manifestations of
pathological regions.

Based on the above experimental analysis, we confirm the
effect of unifying classification and segmentation. Next, we
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Fig. 8. Qualitative results of the coupled loss. The different loss of
top-50 iterations during training on the Fundus and JSRT datasets are
compared.

would like to discuss the coupled loss function’s effect in both
branches’ unified training. First, as shown in Table III, the
R-MAC branch with the circle loss achieves better performance
than the R-MAC branch with the CE loss. The circle loss can
help the R-MAC branch maximize the intra-class similarity and
minimize inter-class similarity by pair similarity optimization.
Second, Compared to the sum of the two losses, the coupled loss
function can improve retrieval performance averagely by 2% on
mAP over the varying number of the returned list on the Fundus
and JSRT datasets. This demonstrates that the coupled loss can
help facilitate the generalization of the learned convolutional
features by unifying the losses to the same order of magnitude.
As shown in Fig 8, compared to the sum of the two losses
(blue), the coupled loss (red) unifies the scale of the circle loss
(yellow) and the cross-entropy loss (green) to prevent the loss
unbalance in the convergence process of different tasks. In the
process of screening and diagnosis, the ambiguous manifestation
of pathological regions may be varied. Hence, the two tasks can
be mutually beneficial to enhance Y-Net’s generalization by the
joint learning scheme.

4) Retrieval Efficiency Analysis (RQ4): In this section, we
discuss the efficiency of the proposed Y-Net from three-folds by
putting the Fundus dataset as an example.

1) Feature computation time. Based on the pre-trained
Y-Net model, we inference the hash-codes of 64-bits from
the core node in the main branch. Hence, the feature
computation of the main branch occupies the most time
cost in the test stage. We can complete the hash-codes
generating for the training set of 585 images in 4 seconds
on GPU. The feature computation time of our Y-Net is
fair to the most comparative methods.

2) Retrieval time. After hash-codes generating, we build
the index in 1 s for the training set by using Faiss. By
querying the test set of 65 images, returning top-10 most
similar images can be done in 34 ms. The time-consuming
processes of the search engine are the indexing search
and similarity calculation. The time cost of both length-
ens when the size of feature vectors used for similarity
calculation extends. As Table II shows (column: Dim),
Y-Net’s hash-code length is equal to the methods using
feature embedding.

3) Memory cost. The memory-consuming is about
2000 Mbps during model training by setting the batch
size at 32. The online search for the index also consumes

about 2000 Mbps. The memory cost depends on the
model complexity where our Y-Net is fair to the methods
aggregating regional features.
According to the above analysis of efficiency, our Y-Net can
provide fair real-time responses with significantly improving the
performance by comparing to the state-of-the-art methods.

V. CONCLUSIONS

To combat the manifestation ambiguity in medical instance
retrieval, we propose a novel framework called Y-Net, encoding
images into compact hash-codes aggregating from convolutional
features. The proposed Y-Net contains the main branch, the
R-MAC branch, the FPN branch. Based on the classification
loss, the R-MAC branch encodes the class-aware semantic infor-
mation of pathological regions into the convolutional features to
avoid SPDD problem. And based on the pixel-wise segmentation
loss, the FPN branch encodes the spatially subtle differences
of pathological regions into the convolutional features to over-
come the DPSD problem. After unifying the classification and
segmentation training, the learned convolutional features in the
main branch are directly aggregated to generate the hash-codes
for similarity measure. The extensive experiments on the two
medical image datasets with class and pixel-wise mask labels
show that our Y-Net can alleviate pathologically abnormal re-
gions’ ambiguity.

There also exist two limitations of this work. First, it is hard
to acquire medical image datasets with pixel-wise segmenta-
tion annotations, while detecting the subtle differences with
the bounding box of pathological regions is challenging. This
restricts our Y-Net’s availability and universality. Second, the
multi-instances and multi-labels of medical images significantly
lift the difficulty of combating pathologically abnormal regions’
ambiguity. In the future, we would like to explore the solutions
to address such issues.
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