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Abstract—Face alignment and 3D face reconstruction are traditionally accomplished as separated tasks. By exploring the strong

correlation between 2D landmarks and 3D shapes, in contrast, we propose a joint face alignment and 3D face reconstruction method to

simultaneously solve these two problems for 2D face images of arbitrary poses and expressions. This method, based on a summation

model of 3D faces and cascaded regression in 2D and 3D shape spaces, iteratively and alternately applies two cascaded regressors,

one for updating 2D landmarks and the other for 3D shape. The 3D shape and the landmarks are correlated via a 3D-to-2D mapping

matrix, which is updated in each iteration to refine the location and visibility of 2D landmarks. Unlike existing methods, the proposed

method can fully automatically generate both pose-and-expression-normalized (PEN) and expressive 3D faces and localize both visible

and invisible 2D landmarks. Based on the PEN 3D faces, we devise a method to enhance face recognition accuracy across poses and

expressions. Both linear and nonlinear implementations of the proposed method are presented and evaluated in this paper. Extensive

experiments show that the proposed method can achieve the state-of-the-art accuracy in both face alignment and 3D face

reconstruction, and benefit face recognition owing to its reconstructed PEN 3D face.

Index Terms—3D face reconstruction, face alignment, cascaded regression, pose and expression normalization, face recognition

Ç

1 INTRODUCTION

THREE-DIMENSIONAL (3D) face models have recently been
employed to assist pose or expression invariant face rec-

ognition and achieve state-of-the-art performance [1], [2],
[3]. A crucial step in these 3D face assisted face recognition
methods is to reconstruct the 3D face model from a two-
dimensional (2D) face image. Besides its applications in face
recognition, 3D face reconstruction is also useful in other
face-related tasks, e.g., facial expression analysis [4], [5] and
facial animation [6], [7]. While many 3D face reconstruction
methods are available, they mostly require landmarks on
the face image as input, and are difficult to handle large-
pose faces that have invisible landmarks due to self-
occlusion.

Existing studies tackle the problems of facial landmark
localization (or face alignment) and 3D face reconstruction
separately. However, these two problems are chicken-and-egg
problems. On one hand, 2D face images are projections of
3D faces onto the 2D plane. Given a 3D face and a 3D-to-2D
mapping function, it is easy to compute the visibility and
position of 2D landmarks. On the other hand, the landmarks

provide rich information about facial geometry, which is
the basis of 3D face reconstruction. Fig. 1 illustrates the
relationship between 2D landmarks and 3D faces. That is, the
visibility and position of landmarks in the projected 2D
image are determined by four factors: the 3D shape, the
deformation due to expression and pose, and the camera pro-
jection parameters. Given such a clear correlation between 2D
landmarks and 3D shape, it is evident that ideally they should be
solved jointly, instead of separately as in prior works—indeed this
is the core of this work.

Motivated by the aforementioned observation, this paper
proposes a unified framework to simultaneously solve the
two problems of face alignment and 3D face reconstruction.
Two sets of regressors are jointly learned from a training set
of pairing annotated 2D face images and 3D face shapes.
Based on the texture features around landmarks on a face
image, one set of regressors (called landmark regressors)
gradually move the landmarks towards their true positions.
By utilizing the facial landmarks as clues, the other set of
regressors (called shape regressors) gradually improve the
reconstructed 3D face. These two sets of regressors are alter-
nately and iteratively applied. Specifically, in each iteration,
adjustment to the landmarks is first estimated via the land-
mark regressors, and this landmark adjustment is also used
to estimate 3D shape adjustment via the shape regressors.
The 3D-to-2D mapping is then computed based on the
adjusted 3D shape and 2D landmarks, and it further refines
the landmarks.

A preliminary version of this work was published in
the 14th European Conference on Computer Vision (ECCV)
2016 [8]. We further extend the work from four aspects.
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(i) We explicitly reconstruct expression deformation of
3D faces, so that both pose and expression normalized
(PEN) and expressive 3D faces can be reconstructed. (ii) We
implement the proposed method in both linear and non-
linear regressions. (iii) We present in detail the applica-
tion of the proposed method to face recognition. (iv) We
carry out a more extensive evaluation with comparisons to
state-of-the-art methods. In summary, this paper makes the
following contributions.

� We present a novel cascaded coupled-regressor based
method with linear and non-linear regressions for
joint face alignment and 3D face reconstruction from a
single 2D image of arbitrary pose and expression.

� By integrating 3D shape information, the proposed
method can more accurately localize landmarks on
images of arbitrary view angles in [�90�; 90�].

� We explicitly deal with expression deformation of
3D faces, so that both PEN and expressive 3D faces
can be reconstructed at a high accuracy.

� We propose a 3D-enhanced approach to improve face
recognition accuracy on off-angle and expressive face
images based on the reconstructed PEN 3D faces.

� We achieve state-of-the-art 3D face reconstruction
and face alignment performance on BU3DFE [5],
AFLW [9], and AFLW2000 3D [10] databases. We
investigate the other-race effect on 3D reconstruction
of the proposed method on FRGC v2.0 database [11].
We demonstrate the effectiveness of our proposed
3D-enhanced face recognition method in improving
state-of-the-art deep learning based face matchers on
Multi-PIE [12] and CFP [13] databases.

The rest of this paper is organized as follows. Section 2
briefly reviews related work in the literature. Section 3 intro-
duces in detail the proposed joint face alignment and 3D
face reconstruction method and two alternative implemen-
tations. Section 4 shows its application to face recognition.
Section 5 reports the experimental results. Section 6 con-
cludes the paper.

2 PRIOR WORK

2.1 Face Alignment

Classical face alignment methods, e.g., Active Shape Model
(ASM) [14], [15] or Active Appearance Model (AAM) [16],
[17], [18], [19], search for landmarks based on global shape
models and texture models. Constrained Local Model
(CLM) [20] also utilizes global shape models to regularize
the landmark locations, but it employs discriminative local
texture models. Regression based methods [21], [22], [23],
[24] have been recently proposed to directly estimate land-
mark locations by applying cascaded regressors to an input
image. These methods mostly do not consider the visibility
of landmarks under different view angles. Consequently,
their performance degrades substantially for non-frontal
faces, and their detected landmarks could be ambiguous
because the anatomically correct landmarks might be invisi-
ble due to self-occlusion (see Fig. 1).

A few methods focused on large-pose face alignment,
which can be roughly divided into two categories: multi-
view based and 3D model based. Multi-view based meth-
ods [25], [26] define different sets of landmarks as tem-
plates, one for each view range. Given an input image, they
fit the multi-view templates to it and choose the best fitted
one as the final result. These methods are usually compli-
cated to apply, and cannot detect invisible self-occluded
landmarks. 3D model based methods, in contrast, can better
handle self-occluded landmarks with the assistance of 3D
face models. Their basic idea is to fit a 3D face model to the
input image to recover the 3D landmark locations. Most of
these methods [10], [27], [28], [29], [30], [31] use 3D morph-
able models (3DMM) [32]—either a simplified one with a
sparse set of landmarks [10], [28] or a relatively dense
one [27]. They estimate the 3DMM parameters by using cas-
caded regressors with texture features as the input. In [28],
the visibility of landmarks is explicitly computed, and the
method can cope with face of yaw angles ranging from �90
to 90 degree, whereas the method in [27] does not work
properly for faces of yaw angles beyond 60 degree. In [33],
Tulyakov and Sebe propose to directly estimate the 3D land-
mark locations via texture-feature-based regressors for faces
of yaw angles up to 50 degree.

These existing 3D model based methods regress between
2D image features and 3D landmark locations (or indirectly,
3DMM parameters). While our proposed approach is also
based on 3D model, unlike existing methods, it carries out
regressions both on 2D images and in the 3D space. Regres-
sions on 2D images predict 2D landmarks, while regressions
in the 3D space predict 3D landmarks coordinates. By inte-
grating both regressions, our proposed method can more
accurately estimate landmarks, and better handle self-
occluded landmarks. It thus works well for images of arbi-
trary view angles in [�90�; 90�].

2.2 3D Face Reconstruction

Estimating the 3D face geometry from a single 2D image is an
ill-posed problem. Existing methods, such as Shape from
Shading (SFS) and 3DMM, thus heavily depend on priors or
constraints. SFS based methods [34], [35] usually utilize an
average 3D face model as a reference, and assume the Lam-
bertian lightingmodel for the 3D face surface. One limitation

Fig. 1. We view 2D landmarks are generated from a 3D face through 3D
expression (fE) and pose (fP ) deformation, and camera projection (fC).
While conventional face alignment and 3D face reconstruction are two
separated tasks and the latter requires the former as input, this paper
performs these two tasks jointly, i.e., reconstructing a 3D face and esti-
mating visible/invisible landmarks (green/red points) from a 2D face
image with arbitrary poses and expressions.
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of SFS methods lies in its assumed connection between 2D
texture clues and 3D shape, which could beweak to discrimi-
nate among different individuals. 3DMM [1], [32], [36], [37],
[38] establishes statistical parametric models for both texture
and shape, and represents a 3D face as a linear combination
of basis shapes and textures. To recover the 3D face from a
2D image, 3DMM-based methods estimate the combination
coefficients by minimizing the discrepancy between the
input image and the image rendered from the reconstructed
3D face. They can better cope with 2D face images of varying
illuminations and poses. However, they still suffer from
invisible facial landmarks when the input face has large
pose angles. To deal with extreme poses, Lee et al. [39],
Qu et al. [40] and Liu et al. [41] propose to discard the
self-occluded landmarks or treat them asmissing data.

All the aforementioned 3D face reconstruction methods
require landmarks as input. Consequently, they either manu-
allymark the landmarks, or employ standalone face alignment
methods to automatically locate the landmarks. Very recently,
Tran et al. [42] propose a convolutional neural network (CNN)
based method to estimate discriminative 3DMM parameters
directly from single 2D images without requirement of input
landmarks. Yet, existing methods always generate 3D faces
that have the same pose and expression as the input image,
which may not be desired in face recognition due to the chal-
lenge ofmatching 3D faceswith expressions [43]. In this paper,
we improve 3D face reconstruction by (i) integrating the face
alignment step into the 3D face reconstruction procedure, and
(ii) reconstructing both expressive and PEN 3D faces, which is
shown to be useful for face recognition.

2.3 Unconstrained Face Recognition

Face recognition has been developed rapidly in the past
decade, especially since the emergence of deep learning
techniques. Although automated methods [44], [45], [46]
outperform humans in face recognition accuracy on the
labelled faces in the wild (LFW) benchmark database, it is
still very challenging to recognize faces in unconstrained
images with large poses or intensive expressions [47], [48].
Potential reasons for degraded accuracy on off-angle and
expressive faces include (i) off-angle faces usually have less
discriminative texture information for identification than
frontal ones, resulting in small inter-class differences, (ii)
cross-view faces (e.g., frontal and profile faces) may have
very limited features in common, leading to large intra-class
differences, and (iii) pose and expression variations could
cause substantial deformation to faces.

Existing methods recognize off-angle and expressive faces
either by extracting invariant features or by normalizing out

the pose or expression deformation. Yi et al. [49] fitted a 3D
face mesh to an arbitrary-view face, and extracted pose-
invariant features based on the 3D face mesh adaptively
deformed to the input face. In DeepFace [50], the input face
was first aligned to the frontal view with assistance of a
generic 3D face model, and then recognized utilizing a deep
network. Zhu et al. [3] proposed to generate frontal and neu-
tral face images from the input images by using 3DMM [32]
and deep convolutional neural networks. Very recently, gen-
erative adversarial networks (GAN) have been explored by
Tran et al. [48], [51] for unconstrained face recognition. They
devised a novel network, namely DR-GAN, which simulta-
neously synthesizes frontal faces and learn pose-invariant
feature representations. Hu et al. [52] proposed to directly
transform a non-frontal face into frontal face by Learning a
Displacement Field network (LDF-Net). LDF-Net achieves
state-of-the-art performance for face recognition across poses
on Multi-PIE, especially at large poses. To summarize, all
these existing methods carry out pose and expression nor-
malization on 2D faces and utilize merely 2D features for rec-
ognition. In this paper, on the contrary, we generate pose and
expression normalized 3D faces from the input 2D images,
and use these resultant 3D faces to improve the uncon-
strained face recognition accuracy.

3 PROPOSED METHOD

In this section, we introduce the proposed joint face align-
ment and 3D face reconstruction method and its implemen-
tations in detail. We start by defining the 3D face model with
separable identity and expression components, and based
on this model formulate the problem of interest. We then
provide the overall procedure of the proposed method.
Afterwards, the preparation of training data is presented,
followed by the introduction of key steps in the proposed
method, including learning 2D landmark and 3D shape
regressors, and estimating 3D-to-2Dmapping and landmark
visibility. Finally, a deep learning based nonlinear imple-
mentation of the proposedmethod is given.

3.1 Problem Formulation

We denote an n-vertex frontal pose 3D face shape of one
subject as

S ¼
x1 x2 � � � xn

y1 y2 � � � yn
z1 z2 � � � zn

0
@

1
A 2 R3�n; (1)

and represent it as a summation of three components

S ¼ SId þ DSExp ¼ �S þ DSId þ DSExp; (2)

where �S is the mean of frontal pose and neutral expression
3D face shapes, termed pose-and-expression-normalized 3D
face shape, DSId is the difference between the subject’s PEN
3D shape (denoted as SId) and �S, and DSExp is the expres-
sion-induced deformation in S w.r.t. SId (Fig. 2).

We use SL to denote a subset of S with columns corre-
sponding to l landmarks. The projections of these land-
marks onto an image I of the subject with arbitrary view are
represented by

Fig. 2. A 3D face shape of a subject (S) is represented as summation of
the mean pose-and-expression-normalized (PEN) 3D face shape ( �S),
the difference between the subject’s PEN 3D shape and the mean PEN
3D shape (DSId), and the expression deformation (DSExp).
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U ¼ u1 u2 � � � ul
v1 v2 � � � vl

� �
¼ fC � fP ðSLÞ 2 R2�l; (3)

where fC and fP are, respectively, camera projection and
pose-induced deformation. In this work, we employ a
3D-to-2D mapping matrix M � fC � fP to approximate the
composite effect of pose-induced deformation and camera
projection.

Given a face image I, our goal is to simultaneously esti-
mate its landmarks U , PEN 3D shape SId, and expression
deformation DSExp. Note that, in some context, we also
write the 3D shape and landmarks as column vectors: S ¼
ðx1; y1; z1; . . . ; xn; yn; znÞT, and U ¼ ðu1; v1; . . . ; ul; vlÞT, where
‘T’ is transpose operator.

3.2 The Overall Procedure

Fig. 3 shows the flowchart of the proposed method. Given
an image I, its 3D shape S is initialized as the mean PEN 3D
shape of training faces (i.e., S0 ¼ �S). Its landmarks U are ini-
tialized by placing the mean landmarks of training frontal
and neutral faces into the face region specified by a bound-
ing box in I via similarity transforms. U and S are iteratively
updated by applying a series of regressors. Each iteration
contains three steps: (i) updating landmarks, (ii) updating
3D face shape, and (iii) refining landmarks.

Updating Landmarks. This step updates the landmarks’
locations from Uk�1 to Ûk based on the texture features in
the image. This is similar to the conventional cascaded
regressor based 2D face alignment [21]. The adjustment to
the landmarks’ locations in kth iteration, DUk is determined
by the local texture feature around Uk�1 via a regressor

DUk ¼ Rk
UðhðI;Uk�1ÞÞ; (4)

where hðI;UÞ denotes the texture feature extracted around
the landmarks U in the image I, and Rk

U is a regression
function. The landmarks can then be updated by Ûk ¼
Uk�1 þ DUk. The method for learning these landmark
regressors in linear case will be introduced in Section 3.4.

Updating 3D Face Shape. In this step, the aforementioned
landmark location adjustment is used to estimate the

adjustment of the 3D shape DSk, which consists of two com-
ponents, DSk

Id and DSk
Exp. Specifically, a regression function

Rk
S models the correlation between the landmark location

adjustment DUk and the expected adjustment DSk
Id and

DSk
Exp, i.e.,

DSk ¼ ½DSk
Id;DS

k
Exp� ¼ Rk

SðDUkÞ: (5)

The 3D shape can be then updated by Sk ¼ Sk�1 þ DSk
Id þ

DSk
Exp. The method for learning these shape regressors in

linear case will be given in Section 3.5.
Refining Landmarks. Once a new estimate of the 3D shape

is obtained, the landmarks can be further refined with the
assitance of the 3D-to-2D mapping matrix. We estimate Mk

based on Sk and Ûk. The refined landmarks Uk can be
obtained by projecting Sk onto the image via Mk according
to Eq. (3). In this process, the landmark visibility is also re-
computed. Details of this step will be given in Section 3.6.

3.3 Training Data Preparation

Before we provide details of the three steps, we first intro-
duce the training data needed for learning the landmark
and shape regressors, which will also facilitate the under-
standing of our algorithms. Since the purpose of these
regressors is to gradually adjust the estimated landmark
and shape towards their ground truth, we need a sufficient
number of triplet data fðIi;S	

i ;U
	
i ÞNi¼1g, where S	

i and U	
i are,

respectively, the ground truth 3D shape and landmarks for
the image Ii, and N is the total number of training samples.
All the 3D shapes have established dense correspondences
among their vertices; i.e., they have the same number of ver-
tices, and vertices of the same index in the 3D shapes have
the same semantic meaning. Here, each of the ground truth
3D shapes includes two parts, the PEN 3D shape S	

Id and its
expression shape S	

Exp ¼ �Sþ DS	
Exp, i.e., S	 ¼ ½S	

Id;S
	
Exp�.

Moreover, both visible and invisible landmarks in Ii have
been annotated and included inU	

i . For invisible landmarks,
the annotated positions should be anatomically correct posi-
tions (e.g., the red points in Fig. 1).

Obviously, to enable regressors to cope with expression
and pose variations, the training data should contain faces

Fig. 3. Flowchart of the proposed joint face alignment and 3D face reconstruction method.
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of these variations. It is, however, difficult to find in the
public domain such data sets of 3D faces and corresponding
annotated 2D images with various expressions/poses.
Thus, we construct two training sets by ourselves: one based
on BU3DFE [5], and the other based on 300W-LP [10], [53].

BU3DFE database contains 3D face scans of 56 females
and 44 males, acquired in neutral plus six basic expressions
(happiness, disgust, fear, anger, surprise and sadness). All
basic expressions are acquired at four intensity levels. These
3D scans have been manually annotated with 84 landmarks
(83 landmarks provided by the database plus one nose tip
marked by ourselves). For each of the 100 subjects, we select
the scans of neutral and the level-one intensity of the rest
six expressions as the ground truth 3D face shapes. From
each of the chosen seven scans of a subject, 19 face images
are rendered at different poses (�90 to 90 degree yaw with
a 10 degree interval) with landmark locations recorded. As
a result, each subject has 133 images of different poses and
expressions. We use the method in [54] to establish dense
correspondence of the 3D scans of 5;996 vertices. With the
registered 3D scans, we compute the mean PEN 3D face
shape by averaging all the subjects’ PEN 3D shapes, which
are defined by their 3D scans of frontal pose and neutral
expression. All the images of one subject share the same
PEN 3D shape of that subject, while their expression shapes
can be obtained by first subtracting from their correspond-
ing 3D scans, their PEN 3D face shape, and then adding the
mean PEN 3D shape.

300W-LP database [10] is created based on 300W [53] data-
base, which integrates multiple face alignment benchmark
datasets (i.e., AFW [25], LFPW [55], HELEN [56], IBUG [53]
and XM2VTS [57]). It includes 122;450 in-the-wild images

of a wide variety of poses and expressions. For each image,
its corresponding registered PEN 3D shape and expression
shape are estimated by using the method in [3] based on
BFM [58] and FaceWarehouse [59]. The obtained 3D faces
have 53;215 vertices. Figs. 4 and 5 show example images and
corresponding PEN 3D shapes and expression shapes in our
training sets.

3.4 Learning Landmark Regressors

According to Eq. (4), landmark regressors estimate the adju-
stment toUk�1 such that the updated landmarksUk are closer
to their ground truth, which, along with landmark visibility,
are given by U	 in training. Therefore, the objective of land-
mark regressorsRk

U is to better predict the difference between
Uk�1 andU	. In this section, we first implement the proposed
method in a linearmanner, by optimizing

Rk
U ¼ argmin

Rk
U

XN
i¼1

k U	
i �Uk�1

i

� ��Rk
UðhðIi;Uk�1

i ÞÞ k22; (6)

which has a closed-form least-square solution. Note that, as
we will show later, other nonlinear regression schemes,
such as CNN [29], can also be adopted in our framework.

We use 128-dim SIFT descriptors [60] as the local feature.
The feature vector of h is a concatenation of the SIFT
descriptors at all the l landmarks, i.e., a 128l-dim vector. If a
landmark is invisible, no feature will be extracted, and its
corresponding entries of hwill be zero. Note that the regres-
sors estimate the semantic locations of all landmarks includ-
ing invisible ones.

3.5 Learning 3D Shape Regressors

The landmark adjustment DUk is also used as the input to
the 3D shape regressor Rk

S . The objective of R
k
S is to compute

an update to the initially estimated 3D shape Sk�1 in the kth
iteration to minimize the difference between the updated
3D shape and the ground truth. Using similar linear regres-
sors, the 3D shape regressors can be learned by solving the
following optimization via least squares

Rk
S ¼ argmin

Rk
S

XN
i¼1

k ðS	
i � Sk�1

i Þ �Rk
S DUk

i

� � k22; (7)

with its closed-form solution as

Rk
S ¼ DSkðDUkÞTðDUkðDUkÞTÞ�1; (8)

where DSk ¼ S	 � Sk�1 and DUk are, respectively, the 3D
shape and landmark adjustment. S and U denote,

Fig. 4. Example images with annotated landmarks (1st, 4th rows), their
3D faces (2nd, 5th rows) and expression shapes (3rd, 6th rows) from the
BU3DFE database. Seven expressions are shown: Angry (AN), disgust
(DI), fear (FE), happy (HA), neutral (NE), sad (SA), and surprise (SU).
The 3D shapes corresponding to the neutral expression are their PEN
3D face shapes, which are highlighted in blue boxes.

Fig. 5. Four subjects in 300W-LP. From left to right: Images with anno-
tated landmarks, PEN 3D face shapes, and expression shapes.
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respectively, the ensemble of 3D face shapes and 2D land-
marks of all training samples with one column per sample.

Since S 2 R6n�N (recall that S has two parts, PEN shape
and expression deformation) and U 2 R2l�N , it can be math-
ematically shown that N should be larger than 2l so that

DUkðDUkÞT is invertible. Fortunately, since the landmark set
is usually sparse, this requirement can be easily satisfied in
real-world applications.

3.6 3D-to-2D Mapping and Landmark Visibility

In order to refine landmarks with the updated 3D shape,
we project the 3D shape to the 2D image with a 3D-to-2D
mapping matrix. In this paper, we dynamically estimate
the mapping matrix based on Sk and Ûk. As discussed in
Section 3.1, the mapping matrix is a composite effect of pose-
induced deformation and camera projection. By assuming a
weak perspective camera projection as in prior work [28],
[61], themappingmatrixMk is represented by a 2� 4matrix,
and can be estimated as a least-square solution to the follow-
ing fitting problem:

Mk ¼ argmin
Mk

k Ûk �MkSk
L k22 : (9)

Once a new mapping matrix is computed, the landmarks
can be further refined as Uk ¼ MkSk

L.
The visibility of the landmarks can be then computed

based on the mapping matrix M using the method in [28].
Suppose the average surface normal around a landmark in
the 3D face shape S is n!. Its visibility v is measured by

v ¼ 1

2
1þ sgn n!� M1

M1k k �
M2

M2k k
� �� �� �

; (10)

where sgnðÞ is the sign function, ‘�’ means dot product and
‘�’ cross product, and M1 and M2 are the left-most three
elements at the top two rows of M. This rotates the surface
normal and validates if it points toward the camera.

Algorithm 1 summarizes the process of learning the cas-
caded coupled linear regressors. Next, we introduce an
alternative implementation of our proposed method by
using nonlinear regressors, i.e., neural networks.

Algorithm 1. Learning Cascaded Coupled Linear
Regressors

Input: Training data fðIi;S	
i ;U

	
i Þji ¼ 1; 2; . . . ; Ng, initial shape

S0
i & landmarks U0

i .
Output: Cascaded coupled-regressors Rk

U;R
k
S

� �K
k¼1

.
1: for k ¼ 1; . . . ;K do
2: Estimate Rk

U via Eq. (6), and compute landmark
adjustment DUk

i via Eq. (4);
3: Update landmarks Ûk

i for all images: Ûk
i ¼ Uk�1

i þ DUk
i ;

4: Estimate Rk
S via Eq. (7), and compute shape adjustment

DSk
i via Eq. (5);

5: Update 3D face Sk
i : S

k
i ¼ Sk�1

i þ DSk
i ;

6: Estimate the 3D-to-2D mapping matrixMk
i via Eq. (9);

7: Compute the refined landmarks Uk
i via Eq. (3) and their

visibility via Eq. (10).
8: end for

3.7 Nonlinear Regressors

In the above linear implementation, linear regressors with
hand-crafted features are used. Here, we provide a nonlin-
ear implementation, in which landmark and 3D shape
regressors are implemented by deep convolutional neural
networks (DCNN) and multiple layer perceptions (MLP),
respectively. Fig. 6 shows its pipeline.

Given a face image, as in linear implementation, its
landmarks and 3D shape are initialized as the average
landmarks and the average 3D shape. In every iteration,
a landmark heatmap H, which has the same dimension
as the input image, is generated from the current esti-
mated landmarks. The value of pixel ðpu; pvÞ in the heat-
map is set as the accumulated contributions of the
visible landmarks, and the contribution of a landmark Uj

is determined by

Hðpu; pvÞ ¼ 1=
�
1þ min

Uj2U
ðpu; pvÞ � Uj

		 		
: (11)

The heatmap and face image are stacked together as input
to the DCNN-based landmark regressor. In this paper,
we employ the structure of Deep Alignment Network
(DAN) [62], and adapt its output layer so that landmark
adjustment is estimated. The obtained landmark adjustment
is then fed into the MLP-based 3D shape regressor (Deep
Reconstruction Network, or DRN). DRN, consisting of a
full-connection layer and a tanh() activation function, com-
putes the 3D shape adjustment. After updating the 3D
shape with the shape adjustment, we further refine the land-
marks as in Section 3.6.

The DCNN- and MLP-based regressors are learned itera-
tively. We first train the regressors in prior iteration until
convergence, and then move on to the next iteration. We
employ the euclidean loss in training both regressors.

4 APPLICATION TO FACE RECOGNITION

In this section we apply the reconstructed 3D faces to
improve face recognition accuracy on off-angle and expres-
sive faces. The basic idea is to utilize the additional feature
provided by the reconstructed PEN 3D faces and fuse it with
conventional 2D face matchers. Fig. 7 shows the proposed
3D-enhanced face recognition method. As can be seen, 3D
face reconstruction methods are applied to both gallery and
probe faces to generate PEN 3D faces. The iterative closest

Fig. 6. Diagram of the proposed method implemented with nonlinear
regressors. Deep Alignment Network (DAN) denotes the DCNN-based
landmark regressors and Deep Reconstruction Network (DRN) denotes
the MLP-based 3D shape regressors. Note that the landmark heatmap
is not used at the initial stage.
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point (ICP) algorithm [63] is applied to match the recon-
structed normalized 3D face shapes. It aligns the 3D shapes
reconstructed from probe and gallery images, and computes
their distances, which are then converted to similarity scores
via subtracting them from the maximum distance. These
scores are finally normalized to the range of ½0; 1� via min-
max normalization, and fused with the scores of the conven-
tional 2D face matcher (which are within ½0; 1� also) by a sum
rule. The recognition result for a probe is defined as the sub-
ject whose gallery sample has the highest match score with
it. Note that we employ the ICP-based 3D face matcher and
the sum fusion rule for simplicity. Other more elaborated 3D
face matchers and fusion rules can also be applied with our
proposed method. Thanks to the additional discriminative
feature in PEN 3D face shapes and its robustness to pose and
expression variations, the accuracy of conventional 2D face
matchers on off-angle and expressive face images can be
effectively improved after fusionwith the PEN 3D face based
matcher. In the next section, we will experimentally demon-
strate this.

5 EXPERIMENTS

We conduct three sets of experiments to evaluate the pro-
posed method in 3D face reconstruction, face alignment,
and face recognition.

5.1 3D Face Reconstruction Accuracy

To evaluate the 3D shape reconstruction accuracy, a 10-fold
cross validation is applied to split the BU3DFE data into
training and testing subsets, resulting in 11;970 training and
1;330 testing samples. We compare the proposed method
with its preliminary version in [8] and three state-of-the-art
methods in [3], [41], [42]. The methods in [8], [42] recon-
struct PEN 3D faces only, while the methods in [3], [41]
reconstruct 3D faces that have the same pose and expression

as the input images. Moreover, the method in [41] requires
that visible landmarks are available together with the input
images. In the following experiments, we use the visible
landmarks projected from ground truth 3D faces for [41].
For the methods of [3], [42], we use the implementation pro-
vided by the authors. In the implementation, these two
methods are based on the 68 landmarks that are detected by
using [64]. As a result, they cannot be applied to faces of
large poses (i.e., beyond 40 degrees).

We use two metrics to evaluate the 3D face reconstruc-
tion accuracy: Mean Absolute Error (MAE) and Normalized
Per-vertex Depth Error (NPDE). MAE is defined as [65]

MAE ¼ 1

NT

XNT

i¼1

ðkS	
i � Ŝik=nÞ; (12)

where NT is the total number of testing samples, S	
i and Ŝi

are the ground truth and reconstructed 3D face shape of the
ith testing sample.

NPDE measures the depth error at the jth vertex in a test-
ing sample as [34]

NPDEðxj; yjÞ ¼ jz	j � ẑjj
� 
.�

z	max � z	min



; (13)

where z	max and z	min are the maximum and minimum depth
values in the ground truth 3D face of testing samples, and
z	j and ẑj are the ground truth and reconstructed depth val-
ues at the jth vertex. We first report the results of our linear
implementation, and then those of the nonlinear one. Note
that when we mention the proposed method, the linear
implementation is referred unless specified.

Reconstruction Accuracy Across Poses. Table 1 shows the
average MAE of the proposed method under different poses
of the input faces. For a fair comparison with the counter-
part methods, we only compute the reconstruction error of
neutral testing images. To compute MAE, the reconstructed
3D faces should be first aligned to the ground truth. Since
the results of [8], [41] and our proposed method already
have the same number of vertices as the ground truth, we
employ Procrustes alignment for these methods as sug-
gested by [66]. For the results of [3], [42], however, the num-
ber of vertices is different from the ground truth. Hence, we
align them using rigid ICP method as [42] does. It can be
seen from Table 1 that the average MAE of the proposed
method (either linear or nonlinear implementation) is lower
than that of counterpart methods. Moreover, as the pose
becomes large, the error of the proposed method does not
increase substantially. This proves the effectiveness of the

Fig. 7. Block diagram of the proposed 3D-enhanced face recognition.

TABLE 1
3D Face Reconstruction Accuracy (MAE) of the Proposed Method and State-of-the-Art Methods at

Different Yaw Poses on the BU3DFE Database

Method 
90� 
80� 
70� 
60� 
50� 
40� 
30� 
20� 
10� 0� Avg.

Zhu et al. [3] - - - - - 2.73 2.74 2.56 2.32 2.22 2.51
Tran et al. [42] - - - - - 2.26 2.19 2.16 2.08 2.06 2.15
Liu et al. [41] 1.95 1.91 1.95 1.96 1.97 1.97 1.96 1.98 2.01 2.03 1.97
Liu et al. [8] 1.92 1.89 1.90 1.93 1.95 1.93 1.93 1.95 1.98 2.01 1.94

Proposed (Linear) 1:85 1:83 1:83 1:83 1:86 1:89 1:90 1:91 1:90 1:91 1:87
Proposed (Nonlinear) 1.92 1.91 1.93 1.92 1.92 1.91 1.92 1.92 1.93 1.93 1.92
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proposed method in handling arbitrary view faces. Fig. 8
shows the reconstruction results of one subject.

Reconstruction Accuracy Across Expressions. Fig. 9 shows
the average MAE of the proposed method and [3], [41]

across expressions, based on their reconstructed 3D faces
that have the same pose and expression as the input. The
proposed method overwhelms its counterpart for all expres-
sions. Moreover, as expressions change, the MAE standard

Fig. 8. Reconstruction results for a BU3DFE subject at nine poses. The even rows show the reconstructed 3D faces by [3], [8], [41], [42] and the pro-
posed method. Except the first row, the odd rows show their corresponding NPDE maps. The colormap goes from dark blue to dark red (correspond-
ing to errors between 0 and 5). The numbers under each error map represent the mean and standard deviation (in%).
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deviation of [3], [41] are 0.157 and 0:179 mm, whereas that of
the proposed method is 0:034 mm in linear implementation
and 0:029 mm in nonlinear implementation. This proves the
superior robustness of the proposed method to expression
variations.

Fig. 10 compares the average MAE of the proposed
method and [8], [42] across expressions, based on their
reconstructed PEN 3D faces. Again, the proposed method
shows superiority in both MAE under all expressions and
robustness across expressions. We believe that such superi-
ority is owing to its explicit modeling of expression defor-
mation. Fig. 11 shows the reconstruction results for one
subject under seven expressions.

Reconstruction Accuracy Across Races. It is well known that
people from different races (e.g., Asian and Caucasian)
show different characteristics in facial shapes. Such other-
race effect has been reported in face recognition litera-
ture [67]. In this experiment, we study the impact of races
on 3D face reconstruction using the FRGC v2.0 database [11].
FRGC v2.0 contains 3D faces and images of 466 subjects
with different ethnic groups (Table 2). Since these faces
have no expression variation, the expression shape compo-
nent in our proposed model is set to zero. We use the
method in [54] to establish dense correspondence of the 3D
faces of 5;996 vertices. We conduct three experiments: (i)
training with 100 Asian samples (denoted as Setting I), (ii)
training with 100 Caucasian samples (Setting II), and (iii)
training with 100 Asian and 100 Caucasian samples (Setting
III). The testing set contains samples of remaining subjects
in FRGC v2.0, including 12 Asian, 6 African, 13 Hispanic, 19
Caucasian and 16 Unknown races.

Fig. 12 compares the 3D face reconstruction accuracy
(MAE) across different ethnic groups. Not surprisingly,
training for one ethnic group can yield higher accuracy on
testing of the same ethnic. As for the other-race effect, the
model trained on Caucasian achieves comparable accuracy
on Caucasian and Hispanic, but much worse on the other
races (and worst on Asian). On the other hand, the model
trained on Asian performs much worse on all other races
compared to on its own race, and the worst on African.
These results reveal the variations in the facial shapes of
people from different races. Further, by combining training
data of Asian and Caucasian (Setting III), comparable recon-
struction accuracy is achieved for both Asian and Cauca-
sian, which is also comparable to those in Setting I and II.
This proves the capability of the proposed method in han-
dling the 3D shape variations among all ethnic groups.

5.2 Face Alignment Accuracy

In evaluating face alignment, several state-of-the-art face
alignment methods are considered for comparison to the pro-
posed method, including RCPR [68], ESR [22], SDM [21],
3DDFA and 3DDFA+SDM [10]. The dataset constructed from
300W-LP is used for training, the AFLW [9] and AFLW2000-
3D [10] are for testing. AFLW contains 25;993 in-the-wild
faces with large poses (yaw from �90 to 90 degree). Each
image is annotated with up to 21 visible landmarks. For a fair
comparison to [10], we use the same 21;080 samples as our
testing set, and divide the testing set into three subsets accord-
ing to the absolute yaw angle of the testing image: 0�; 30�½ Þ,
30�; 60�½ Þ and 60�; 90�½ �. The resulting three subsets have
11;596, 5;457 and 4;027 samples, respectively. AFLW2000-3D
contains the ground truth 3D faces and the corresponding 68
landmarks of the first 2;000 AFLW samples. There are 1;306
samples in 0�; 30�½ Þ, 462 in 30�; 60�½ Þ and 232 in 60�; 90�½ �. The
bounding boxes provided by AFLW are used in the AFLW
testing, while the ground truth bounding boxes enclosing all
68 landmarks are used for the AFLW2000-3D testing.

Normalized Mean Error (NME) [28] is employed to mea-
sure the face alignment accuracy. It is defined as the mean
of the normalized estimation error of visible landmarks for
all testing samples

NME ¼ 1

NT

XNT

i¼1

1

di

1

Nv
i

Xl
j¼1

vijjjðûij; v̂ijÞ � ðu	
ij; v

	
ijÞjj

 !
; (14)

where di is the square root of the bounding box area of the
ith testing sample, Nv

i is the number of its visible land-
marks, ðu	

ij; v
	
ijÞ and ðûij; v̂ijÞ are, respectively, the ground

truth and estimated coordinates of its jth landmark.
Table 3 compares the face alignment accuracy on the

AFLW and AFLW2000-3D datasets. As can be seen, the

Fig. 9. 3D face reconstruction accuracy (MAE) of the proposed method,
[41] and [3] under different expressions: Angry (AN), disgust (DI), fear
(FE), happy (HA), neutral (NE), sad (SA) and surprise (SU).

Fig. 10. PEN 3D face reconstruction accuracy (MAE) of the proposed
method, [8] and [42] under different expressions.

TABLE 2
Number and Percentage of Subjects of Different
Genders and Races in the FRGC v2.0 Database

Asian African Hispanic Caucasian Unknown Total

Female 55 (11:8%) 2 (0:4%) 5 (1:1%) 134 (28:8%) 6 (1:3%) 202 (43:3%)
Male 57 (12:2%) 4 (0:9%) 8 (1:7%) 185 (39:7%) 10 (2:1%) 264 (56:7%)
Total 112 (24:0%) 6 (1:3%) 13 (2:8%) 319 (68:5%) 16 (3:4%) 466 (100%)
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proposed method achieves the best accuracy for all poses
and on both datasets. In order to assess the robustness of
different methods to pose variations, we also report their
standard deviations of the NME in Table 3. The results
again demonstrate the superiority of the proposed method

over the counterpart. Fig. 13 shows the landmarks detected
by the proposed method on some AFLW images.

Moreover, for the proposed method, the nonlinear
regression implementation is better than the linear one.
CNN feature is more powerful and robust than the

Fig. 11. Reconstruction results for a BU3DFE subject in seven expressions. The first row shows the input images. The red box shows the recon-
structed 3D faces with the same expression as the input, using [3], [41] and the proposed method. The blue box shows the reconstructed PEN 3D
faces by [8], [42] and the proposed method.
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handcrafted SIFT feature for the face alignment task. In con-
trast, in the experiments of 3D face reconstruction on
BU3DFE database (see Section 5.1), the reconstruction error
of linear regressors is lower than that of nonlinear regres-
sors. This might be because MLP-based nonlinear regressors
for 3D face reconstruction need more training samples.

5.3 Face Recognition

While there are many recent face alignment and reconstruc-
tion works [69], [70], [71], [72], [73], few works take one step
further to evaluate the contribution of alignment or recon-
struction to subsequent tasks, such as face recognition. In con-
trast, we quantitatively evaluate the contribution of the
reconstructed pose-expression-normalized 3D faces to face
recognition by directly matching 3D to 3D shape and fusing it
with conventional 2D face recognition. Refer to Section 4 for
details of the PEN3D faces enhanced face recognitionmethod.

In this evaluation, we employ the linear implementation,
and use the BU3DFE (13,300 images of 100 subjects; refer to
Section 3.3) and MICC [74] databases as training data, the
CMUMulti-PIE database [12] and the Celebrities in Frontal-
Profile (CFP) database [13] as test data. MICC contains 3D
face scans and video clips (indoor, outdoor and cooperative
head rotations environments) of 53 subjects. We randomly
select faces with different poses from the cooperative envi-
ronment videos, resulting in 11;788 images of 53 subjects
and their corresponding neutral 3D face shapes (whose
expression shape components are thus set to zero). The 3D
faces are processed by the method in [54] to establish dense
correspondence with n ¼ 5;996 vertices.

5.3.1 Face Identification on Multi-PIE Database

CMU Multi-PIE is a widely used benchmark database for
face recognition, with faces of 337 subjects collected under
various views, expressions and lighting conditions. Here, we
consider pose and expression variations, and conduct two
experiments. In the first experiment, following the setting
of [3], [75], probe images consist of the images of all 337 sub-
jects at 12 poses (
90�, 
75�, 
60�, 
45�, 
30�, 
15�) with
neutral expression and frontal illumination. In the second
experiment, instead of neutral expression, all images with
smile, surprise, squint, disgust and scream expressions at
the 12 poses and under frontal illumination are the probe
images. This protocol is an extended version of [3], [4] by
adding large-pose images (
60�,
75�,
90�). In both experi-
ments, the frontal images captured in the first session are
the gallery. And four state-of-the-art deep learning based
(DL-based) face matchers are used as baselins, i.e., VGG [76],

Fig. 12. 3D face reconstruction accuracy (MAE) of the proposed method
across different ethnic groups.

TABLE 3
The Face Alignment Accuracy (NME) of the Proposed Method and State-of-the-Art Methods on AFLW

and AFLW2000-3D Databases

Method AFLW Database (21 points) AFLW2000-3D Database (68 points)

0�; 30�½ Þ 30�; 60�½ Þ 60�; 90�½ � Mean Std 0�; 30�½ Þ 30�; 60�½ Þ 60�; 90�½ � Mean Std

RCPR [68] 5.43 6.58 11.53 7.85 3.24 4.26 5.96 13.18 7.80 4.74
ESR [22] 5.66 7.12 11.94 8.24 3.29 4.60 6.70 12.67 7.99 4.19
SDM [21] 4.75 5.55 9.34 6.55 2.45 3.67 4.94 9.76 6.12 3.21
3DDFA [10] 5.00 5.06 6.74 5.60 0:99 3.78 4.54 7.93 5.42 2.21
3DDFA+SDM [10] 4.75 4.83 6.38 5.32 0.92 3.43 4.24 7.17 4.94 1.97

Proposed (Linear) 3.75 4.33 5.39 4.49 0:83 3.25 3:95 6.42 4.61 1.78
Proposed (Nonlinear) 3:22 4:13 5:13 4:16 0.96 2:72 4.06 5:81 4:20 1:55

Fig. 13. The 68 landmarks detected by the proposed method for AFLW data. Green/red points denote visible/invisible landmarks.
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Lightened CNN [77], CenterLoss [78] and LDF-Net [52]. The
first three matchers are publicly available. We evaluate them
with all 337 subjects in Multi-PIE. The last matcher, LDF-
Net, is a latest one specially designed for pose-invariant face
recognition. It uses the first 229 subjects for training and the
remaining 108 subjects for testing. Since it is not publicly
available, we request the match scores from the authors, and
fuse our 3D shape match scores with theirs. Note that given
the good performance of LDF-Net, we assign a higherweight
(i.e., 0.7) to it, whereas theweights for all the other three base-
linematchers are set to 0.5.

Table 4 reports the rank-1 accuracy of the baseline face
matchers in the first experiment, where the baseline match-
ers are all further improved by our proposed method.
Specifically, VGG and Lightened CNN are consistently
improved across different poses when fused with 3D, while
CenterLoss gains substantial improvement at large poses
(15.5 percent at 
90� and 4.0 percent at 
75�). Even for
the latest LDF-Net, the recognition accuracy is improved by
5.1 percent at 
90� and 1.4 percent at 
75�. For all the base-
line matchers, the larger the yaw angle is, the more evident
the accuracy improvement. Table 4 also gives the recogni-
tion accuracy of using only the reconstructed 3D faces, at
the row headed by “ICP-3D”. Although its average accuracy
is much worse compared with its 2D counterparts, it fluctu-
ates more gently as probe faces rotate from frontal to profile.
These results prove the effectiveness of the proposed
method in dealing with pose variations, as well as in recon-
structing individual 3D faces with discriminative details
that are complementary to 2D face recognition.

Given its best performance among three publicly avail-
able baseline matchers, we employ the CenterLoss matcher
in the second experiment. The results are shown in Table 5.
As can be seen, the compound impact of pose and expres-
sion variations makes the face recognition more challeng-
ing, resulting in obviously lower accuracy compared with
those in Table 4. Yet, our proposed method still improves
the overall accuracy of the baseline, especially for probe
faces of large pose or disgust expression. We believe that
such performance gain in recognizing non-frontal and
expressive faces is owing to the capability of the proposed
method in providing complementary pose-and-expression-
invariant discriminative features in the 3D face shape space.

5.3.2 Face Verification on CFP Database

We further evaluate our reconstructed PEN 3D faces on a
more challenging unconstrained face recognition setting by
using the CFP database, which has 500 subjects each with 10
frontal and 4 profile images. The evaluation includes fron-
tal-frontal (FF) and frontal-profile (FP) face verification,
each having 10 folders with 350 same-person and 350 differ-
ent-person pairs. Table 6 reports the average results with
standard deviations in terms of Accuracy, Equal Error Rate
(EER), and Area Under the Curve (AUC).

Given its best performance on Multi-PIE database, we
employ the CenterLoss matcher in this experiment. We also
report the recognition accuracy of reconstructed PEN 3D
faces (see “ICP-3D”). Although its average accuracy is much
worse compared with the baseline, it further improves the
performance of CenterLoss in both frontal-frontal and fron-
tal-profile face verification. These results prove the effective-
ness of the proposedmethod in dealingwith pose variations,
as well as the ability in providing complementary discrimi-
native features in unconstrained environment. Fig. 14 shows

TABLE 4
Recognition Accuracy (%) in the First Experiment on Multi-PIE
by the Four State-of-the-Art DL-Based Face Matchers Before

(Indicated by Suffix “2D”) and After (Indicated by Suffix “Fusion”)
Our 3D Enhancement

Method 
90� 
75� 
60� 
45� 
30� 
15� Avg.

VGG-2D 36.2 66.9 83.5 93.8 97.7 98.6 79.5
LightenedCNN-2D 7.50 31.5 78.6 96.3 99.1 99.8 68.8
CenterLoss-2D 48.2 72.7 92.6 98.8 99.6 99.7 85.3
LDF-Net-2D 65.3 86:2 93.7 98.4 98.9 98.6 90.2

ICP-3D 31.8 30.6 34.3 32.8 34.7 44.3 33.0

VGG-Fusion 52.6 75.2 90.5 96.8 98.5 99.4 85.5
LightenedCNN-Fusion 23.6 45.3 84.6 97.6 99.6 99.9 75.1
CenterLoss-Fusion 63.7 76.7 92.5 97.8 98.4 98.7 88.0
LDF-Net-Fusion 70.4 87.6 93.4 98.1 97.9 97.7 90.9

TABLE 5
Recognition Accuracy (%) of the CenterLoss Matcher in the Second Experiment on Multi-PIE

PosenExpression Smile Surprise Squint Disgust Scream Avg.


90� 51:4ð36:9Þ 46:1ð35:7Þ 58:8ð38:7Þ 42:0ð24:9Þ 63:6ð52:4Þ 52:4ð37:7Þ

75� 73:1ð67:0Þ 56:6ð53:0Þ 72:6ð67:8Þ 52:5ð43:4Þ 75:1ð71:6Þ 66:0ð60:4Þ

60� 88:6ð89:8Þ 80:2ð80:7Þ 91:6ð88:2Þ 74:6ð69:8Þ 91:8ð92:7Þ 85:4ð84:2Þ

45� 95:9ð97:6Þ 89:4ð95:1Þ 95:6ð97:8Þ 86:7ð83:5Þ 97:3ð98:7Þ 93:0ð94:5Þ

30� 97:8ð99:1Þ 93:1ð97:0Þ 96:8ð99:3Þ 90:4ð91:5Þ 98:5ð99:8Þ 95:3ð97:3Þ

15� 98:5ð99:6Þ 95:6ð97:3Þ 97:5ð100Þ 92:6ð93:5Þ 98:1ð99:2Þ 96:5ð97:9Þ
Avg. 84:2ð81:7Þ 76:8ð76:5Þ 85:5ð82:0Þ 73:1ð67:8Þ 87:4ð85:7Þ 81:4ð78:7Þ
The results shown in brackets are obtained by using the original CenterLoss matcher without enhancement by our reconstructed 3D faces.

TABLE 6
Verification Accuracy on CFP by the CenterLoss Face Matchers
Before (Indicated by Suffix “2D”) and After (Indicated by Suffix

“Fusion”) the Enhancement by Our Proposed Method

Method CenterLoss-2D ICP-3D CenterLoss-Fusion

FF
Accuracy (%) 86:43
 3:10 74:83
 3:85 89:21
 2:88

EER (%) 14:20
 3:58 27:65
 3:80 11:37
 2:94
AUC (%) 93:38
 2:18 78:41
 4:11 94:24
 2:67

FP
Accuracy (%) 69:27
 2:33 65:74
 2:47 72:99
 1:90

EER (%) 31:63
 2:36 36:26
 2:76 27:91
 2:06
AUC (%) 74:61
 2:54 69:02
 3:69 78:64
 2:43
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some example genuine and imposter pairs in CFP, which are
incorrectly recognized by CenterLoss, but correctly recog-
nized by fusion of CenterLoss and our proposedmethod.

5.4 Convergence

The proposed method has two alternate optimization
processes, one in 2D space for face alignment and the
other in 3D space for 3D shape reconstruction. We experi-
mentally investigate the convergence of these two processes
when training the proposed linear and nonlinear implemen-
tations on the BU3DFE database. We conduct ten-fold cross-
validation experiments, and compute the average errors
over the training data through ten iterations. As shown in
Fig. 15, the training errors converge in about five iterations
in the linear implementation, while in the nonlinear imple-
mentation the training errors converge fast after two to
three iterations. Hence, we set the number of iterations as
K ¼ 5 and K ¼ 3 in the linear and nonlinear implementa-
tions, respectively.

5.5 Computational Complexity

According to our experiments on a PC with i7-4790 CPU
and 32 GB memory, the linear implementation of the pro-
posed method runs at � 26 FPS, and the nonliner imple-
mentation runs at � 52 FPS with a NVIDIA GeForce GTX
1080. This indicates that the proposed method can detect
landmarks and reconstruct 3D faces in real-time. We also
report the efficiency of individual steps in Table 7, and com-
parison with existing methods in Table 8.

6 CONCLUSION

In this paper, we present a novel regression based method
for joint face alignment and 3D face reconstruction from
single 2D images of arbitrary poses and expressions. It uti-
lizes landmarks on a 2D face image as clues for recon-
structing 3D shapes, and uses the reconstructed 3D shapes
to refine landmarks. By alternately applying cascaded
landmark regressors and 3D shape regressors, the pro-
posed method can effectively accomplish the two tasks
simultaneously in real-time. Unlike existing 3D face recon-
struction methods, the proposed method does not require
additional face alignment methods, but can fully autom-
atically reconstruct both pose-and-expression-normalized
and expressive 3D faces from a single face image of arbi-
trary poses and expressions. Compared with existing face
alignment methods, the proposed method can effectively
handle invisible and expression-deformed landmarks with
the assistance of 3D face models. Extensive experiments
with comparisons to state-of-the-art methods demonstrate
the effectiveness and superiority of the proposed method
in both face alignment and 3D face reconstruction, and in
facilitating cross-view and cross-expression face recogni-
tion as well.
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Fig. 14. Example (a) genuine pairs and (b) imposter pairs in CFP and
corresponding PEN 3D faces, for which the CenterLoss method fails,
whereas its fusion with our proposed method succeeds. Note that the
operational threshold in our experiments is empirically set to 0.502.

Fig. 15. (a) and (b) Show the reconstruction errors (MAE) and alignment
errors (NME) during the training of proposed method as iteration pro-
ceeds, when trained on the BU3DFE database.

TABLE 7
The Time Efficiency (in Milliseconds orms)

of the Proposed Method

Step
Updating
landmarks

Updating
shape

Refining
landmarks

Total

Linear (ms) 14.93 15.38 8.57 38.88
Nonlinear (ms) 10.22 0.04 9.28 19.32

TABLE 8
Efficiency Comparison of Different Reconstruction Methods

Method [3] [42] [41] [8] Proposed
(Linear)

Proposed
(Nonlinear)

Time (ms) 56.3 88.0 12.6 32.8 38.9 19.3

For the methods of [3], [41], [42], although stand-alone landmark detection is
required, it is not included in the reported times.
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