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Abstract

In this paper, we propose a likelihood ratio based loss
for very low-resolution face verification. Existing loss func-
tions either improve the softmax loss to learn large-margin
facial features or impose Euclidean margin constraints be-
tween image pairs. These methods are proved to be better
than traditional softmax, but fail to guarantee the best dis-
crimination features. Therefore, we propose a loss function
based on likelihood ratio classifier, an optimal classifier in
Neyman-Pearson sense, to give the highest verification rate
at a given false accept rate, which is suitable for biomet-
rics verification. To verify the efficacy of the proposed loss
function, we apply it to address the very low-resolution face
recognition problem. We conduct extensive experiments on
the challenging SCface dataset with the resolution of the
faces to be recognized below 16×16. The results show that
the proposed approach outperforms state-of-the-art meth-
ods.

1. Introduction

Face verification is a common computer vision task, de-
termining whether a pair of faces belongs to the same iden-
tity, that is widely used for identity authentication. Face
verification performance has been boosted due to advanced
deep CNN architectures [1, 2, 4, 3, 5] and the development
of discriminative learning approaches. The main purpose
of discriminative learning approaches is to ensure the fea-
tures of the same person have a small distance while fea-
tures of different individuals have a considerable distance.
Loss functions are commonly used to shape the discrimina-
tive learning.

Loss functions are categorized into classification
loss (identification loss) functions [6, 7, 8, 9, 10, 11] and
metric learning loss (verification loss) functions [12, 13]
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according to whether an image or image pair is explicitly
used. The most popular classification loss, i.e., the soft-
max loss is widely used for deep CNN learning. However,
it forces the network to learn separating features (i.e., sep-
arating different classes) which is not necessarily discrim-
inative enough and cannot ensure that the features of the
same identity have a small distance. Many prevailing clas-
sification loss functions (see Fig. 1(a)) are proposed to ad-
dress this issue. These methods improve the embedded fea-
tures by incorporating various margin-based constraints to
strengthen the classifier part and then use the softmax func-
tion and cross-entropy loss to supervise network training.
Compared with the traditional softmax loss function, these
embedded features are more discriminative mainly because
of the use of margin constraints, which improves the perfor-
mance of face recognition.
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Figure 1. Comparison between existing loss functions including
(a) margin based softmax loss, (b) image pair magrgin based loss
and the proposed loss function (c) likelihood ratio based loss.

Metric learning loss functions (see Fig. 1(b)) such as
contrastive loss [13] or triplet loss [12] explicitly constrain
the relationship between image pairs and force positive
pairs to have a small distance and negative pairs to have a
large distance. More specifically, Euclidean distance based
margin constraint is employed to get the negative pairs far
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away from positive pairs, which can improve the discrimi-
native capacities of embedding features.

All of the above loss functions are margin-constraint
based learning methods, either Euclidean distance margin
based [13, 12, 6], cosine similarity metric based [9, 10, 11],
or angular margin based [7, 8]. These methods can achieve
better results compared with traditional softmax, but they
cannot guarantee the best discriminative ability of embed-
ded deep features.

In this paper, we propose a likelihood ratio loss func-
tion which directly optimizes the constraints between image
pairs (see Fig. 1(c)). It is well-known that an optimal clas-
sifier in Neyman-Pearson sense is obtained by thresholding
the likelihood ratio, cf. for example [14], which means at
a given false-acceptance rate the classifier minimized the
false rejection rate and vice versa. The likelihood ratio will
give the highest verification rate at a given false accept rate.
Therefore, the proposed loss function can be deployed to
solve the face verification task and would achieve the opti-
mal verification performance in theory. A comparison be-
tween the proposed method and the existing loss functions
is shown in Fig. 1.

Ideally, we could train deep CNNs from scratch by like-
lihood ratio loss. But it requires a large amount of train-
ing data, and the training is time-consuming. In this paper,
we combine the deep CNN with the proposed loss function
sequentially and then fine-tune the parameters using like-
lihood ratio loss function. The deep CNN is assumed to
be trained already by arbitrary loss functions, and any ad-
vanced deep models can be incorporated. More specifically,
we apply the proposed loss function to the specific situa-
tion with only limited data available. Our application do-
main is very low resolution (VLR) face recognition, which
is challenging and more difficult than low resolution (LR)
face recognition. The size of LR face images is less than
25 × 25 pixels [16] while the resolution of the VLR face
image is lower than 16× 16 pixels [15].

The three main contributions of this paper are described
below.

• We propose a likelihood ratio based loss function for
very low resolution face verification and can achieve
good performance.

• We propose a training procedure so that CNNs trained
by arbitrary losses can be further fine tuned with only
limited data at hand.

• We can use situation-relevant prior odds to benefit the
VLR face recognition task.

The rest of this paper is organized as follows. Related
work is shown in Sec. 2. Sec. 3 describes the proposed
method. Experimental results are shown in Sec. 4. Con-
cluding remarks are drawn in the end.

2. Related Work
In this section, we first elaborate the existing loss func-

tions and highlight the difference in the proposed method.
Then we focus on our application domain and illustrate the
related work on very low resolution face recognition.

2.1. Loss Functions

Loss functions play a very important role in the deep
learning techniques. The traditional softmax loss function
involves the fully connected layer, softmax function and
cross-entropy loss function. The fully connected layer re-
alises the classifier and does not require explicit margin
based constraints. Thus the feature embedding can be sep-
arable but it cannot ensure sufficient discrimination of the
features to reduce intra-class distances. Center face [6] pe-
nalizes the Euclidean distance between the deep features
and their corresponding class center such that the deep fea-
tures of each class are pulled to its center. It only explic-
itly optimizes the intra-class compactness while ignoring
the inter-class variances.

L-Softmax loss [7] enforces an angular margin constraint
between the deep features of different classes. It implic-
ity incorporates the angle which may render the features
angularly distributed thus this does not guarantee optimal
discrimination. As an improvement, A-Softmax loss [8]
explicitly projects the original Euclidean space of features
to an angular space and then imposes angular margins on
the projected features. Angular margin based loss func-
tions are more appropriate than Euclidean distance margin
based loss functions because the traditional softmax func-
tion has an intrinsic consistency with cosine of the angle [8].
Recently, cosine margin based loss functions [9, 10, 11]
are introduced to learn large margin features in a natural
way. It seems reasonable to apply cosine margin to the
features between different classes because cosine distance
metric is frequently used for recognition. Compared with
angular margin based constraints, cosine margin based loss
functions are more robust to the noises around the bound-
ary [11].

As Fig. 1 shows, most prevailing loss functions are pro-
posed to engage in various margin constraints based on soft-
max loss. More specifically, these methods develop the
fully connected layer (regarded as a classifier) in the soft-
max loss by enforcing margin constraints. In other words,
the core task of softmax loss based methods is how to im-
prove the classifier part, i.e., fully connected layer part.
More elaborated classifier produces the better performance.
As for face verification, the most intuitive way is to em-
ploy constraints on image pairs rather than the single image.
Contrastive loss [13] minimizes the Euclidean distances be-
tween faces for the same identity and enforces a margin be-
tween different identities. Triplet loss [12] aims to pull the
positive pair separately from the negative by a Euclidean
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distance. In conclusion, these methods define the rule which
acts as ‘classifier’ to improve network training. However,
the mining for appropriate image pairs can be troublesome.
Differently, we merge the likelihood ratio classifier as the
part of the proposed loss function. It offers two benefits:
first, the likelihood ratio classifier is an optimal classifier in
Neyman-Pearson sense. Second, it works when the training
data is limited.

2.2. Very Low Resolution Face Recognition

Faces captured at some distance by surveillance cameras
usually have a very low resolution, i.e., the size is less than
16 × 16 pixels, whereas enrolled faces are collected in a
controlled scenario with high resolution. The comparison
of both constitute the very low resolution face recognition
problem.

To our knowledge, there are few works proposed to ad-
dress this challenging task. To solve the problem, Zou et
al. [15] design two constraints including a data constraint
and a discriminant constraint. The data constraint is to es-
timate the reconstruction error in the high resolution (HR)
image space to make use of the information from HR train-
ing images. The discriminative constraint is to use class
label to boost recognition performance. This method fo-
cuses more on face super resolution (SR) rather than face
recognition, which leads to a suboptimal recognition per-
formance. Ref. [36] utilizes singular value decomposition
to represent face images and considers face hallucination
and low resolution recognition simultaneously to improve
the performance for each task. PCSRN (Partially Coupled
SR Networks) [17] is introduced to solve the very low res-
olution problem not limited to face recognition by assum-
ing that a part of HR feature and VLR feature are shared. It
generalizes VLR face recognition to a common VLR recog-
nition problem while ignoring the characteristic brought by
face, which may lead to suboptimal solutions.

Recently, Peng et al. [18] propose Mixed Resolution
Classifier (MRC) to map HR faces and VLR faces to a com-
mon feature space and obtain its likelihood ratio for face
verification. Discriminative MDS method [19] learns map-
ping matrix to project the HR and LR images to a common
space while considering both interclass distances and intra-
class distances. However, this method concerns LR instead
of VLR face recognition. Deep coupled resnet [37] is pre-
sented to combine one trunk network and two branch net-
works. The trunk network is used to extract discriminative
features and the branch networks are trained on image pairs
with HR and specific target LR faces to further minimize
their feature differences. GenLR-Net [20] is developed to
deal with low resolution face and object recognition. How-
ever, it mainly focuses on object recognition and only use
simulated faces (not realistic low resolution faces) for test-
ing. Resolution invariant deep network (RIDN) [21] is pro-

posed to solve the LR face recognition and has achieved
best performance, but the performance decreases dramati-
cally when the images degrade from LR to VLR. The pro-
posed RIDN is the basis of the method proposed here and is
used for feature extraction.

3. The Proposed Approach
3.1. Problem Statement

Most margin based softmax losses incorporate a better
classifier, i.e., margin based fully connected layer, to im-
prove the face recognition performance. Similarly, we pro-
pose a loss function based on the traditional likelihood ratio
classifier in which the margin constraints are explicitly op-
timised which results in a better feature embedding. The
likelihood ratio classifier has been proven to be an optimal
classifier in Neyman-Pearson sense which can achieve the-
oretically optimal performance for face verification.
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Figure 2. The framework of the proposed likelihood ratio loss
function. The gray box indicates that parameters of the network
are fixed during the fine-tuning stage.

The framework of the proposed approach is shown in
Fig. 2. We use the deep CNN for convolutional feature ex-
traction and the architecture of deep CNN can be arbitrary.
In this paper, we use the RIDN [21] (see Fig. 3) as a example
to illustrate how the likelihood ratio loss function improves
the embedded features for the specific task, such as very low
resolution face recognition. The likelihood ratio based loss
function consists of three parts: The likelihood ratio classi-
fier unit takes the deep feature pair as input and outputs its
likelihood ratio; The probability function unit considers the
situation-relevant prior odds to predict the probability that
a pair of features belongs to the same person; The logistic
cross entropy loss unit calculates the loss to supervise the
network training and update the parameters.

The initial deep features of the HR image and the VLR
image are presented by x and y, respectively. Likelihood
ratio score, obtained by likelihood ratio classifier R(·), that
is denoted as,

s = R(x,y; W) (1)

where W represents the covariance and cross-covariance
matrices that needs to be estimated during a training pro-
cess. It will be fixed after being estimated. Then we use
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Figure 3. Architecture of Resolution Invariant Deep Net-
work (RIDN) [21] for resolution-robust feature extraction.

the probability function P(·) and logistic cross entropy loss
function L(·) sequentially to update the initial features.

During face recognition, we first obtain the updated fea-
tures, and then use the likelihood ratio classifier as the met-
ric for face verification.

3.2. Likelihood Ratio Classifier

Given two embedded deep features x ∈ Rn and y ∈
Rn. We look for support for hypothesis Hs: the features
originate from the same person versus hypothesis Hd: the
features originate from different individuals. The decision
that provides a maximum verification rate at a given false-
acceptance rate follows by thresholding the likelihood ratio:

lr (x,y) =

p

((
x
y

)
|Hs

)
p

((
x
y

)
|Hd

) . (2)

The similarity score, which is used as an approximation
of log likelihood ratio, is denoted as,

s(xc,yc)=−
d∑

i=1

νi
1− νi

(xc,i−yc,i)
2+

d∑
i=1

νi
1 + νi

(xc,i+yc,i)
2.

(3)
The derivation of formulas is ignored here for simplicity
and can be be found in Ref. [18]. The block diagram of
the likelihood ratio classifier according to Eq. (3) is shown
in Fig. 4. It describes how to get a similarity score from a
given image pair in detail.

The likelihood ratio classifier contains feature reduc-
tion and similarity score calculation. During feature re-
duction, whitening transforms is first applied to x and y
and U,D,V are obtained by singular value decomposition.
Here subscript ∗, 1d in (U∗,1d)T and (V∗,1d)T denotes the
first d columns of matrix are used. The x̄ and ȳ are the
average HR and LR image features, respectively. In short,
feature reduction phase reduces the dimension of features
from dimension n to a compact feature dimension d. The
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Figure 4. Block diagram of the likelihood ratio classifier. All the
boxes in color denotes matrices that need learning during training
process.

color blocks perform matrix multiplications while the white
block computes a squared vector norm. In similarity score
calculation, the matrices ∆DIF and ∆SUM are diagonal ma-
trices learned from training process which are defined as
follows,

∆DIF,i =
νi

νi − 1
, i = 1, ..., d (4)

∆SUM,i =
νi

νi + 1
,i = 1, ..., d (5)

where d is the number of singular value νi on the diagonal
of dignonal matrix D.

3.3. Probability Function

For any pair of features, its log likelihood ratio can be
obtained as described in Sec. 3.2. Hs hypothesizes the fea-
tures originate from the same identity and Hd hypothesizes
the features originate from the different individuals. Based
on the posterior probability, we obtain,

p(Hs|s) =
p(s|Hs)p(Hs)

p(s)
(6)

p(Hd|s) =
p(s|Hd)p(Hd)

p(s)
(7)

Divide Eq.(6) and Eq.(7) and bring p(Hs|s) + p(Hd|s) = 1
into the formula. Then we can arrive at:

p(Hs|s)
1− p(Hs|s)

=
p(s|Hs)

p(s|Hd)
· p(Hs)

p(Hd)
(8)

where p(Hs)
p(Hd)

is the prior odds, which is a hyper-parameter
and needs to be given according to the specific situation.
For simplicity, we abbreviate prior odds to A.

Here likelihood ratio p(s|Hs)
p(s|Hd)

can be written as lr(s), de-
noting the likelihood ratio on s. After training likelihood
ratio classifier, the similarity score s would be the lr(x,y)
or the llr(x,y) which is short for log(lr(x,y)). If we train
the method sufficiently, the ratio of similarity score func-
tion lr(s) would become lr(x,y). We use llr to represent
p(s|Hs)
p(s|Hd)

. The Eq.(8) is denoted as,

P(Hs|s) =
ellr+logA

1 + ellr+logA (9)
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where llr is short for llr(s) and can become llr(x,y) from
sufficiently training. And llr can be approximated by likeli-
hood ratio classifier.
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Figure 5. How prior odds A affects the predicted probability.
When the similarity score is fixed, the prior odds produce the prob-
ability that an image pair belongs to the same person.

From Eq.(9), we could see if prior odds A equals to 1,
the formula becomes the sigmoid function. As Fig. 5 shows,
with the increase of A, higher confidence will be given on
positive image pairs. With the decrease of A, bias will be
given on negative image pairs.

3.4. Logistic Cross Entropy Loss Function

The probability function predicting the probability that
an image pair belongs to the same identity is incorporated
into the final loss calculation. We rewrite the Eq.(9) as fol-
lows for concise,

P̂ =
1

1 + A−1e−s
(10)

with similarity score s equals to llr, where P̂ represents the
predicted probability. The loss function is denoted as,

L = −PlogP̂− (1− P)log(1− P̂) (11)

= −P(logA + s)− log
e−s

A + e−s

where P is the target probability, and P = 1 means the im-
age pair are from the same identity, and P = 0 means the
image pair are from different individuals. The loss is mini-
mized over the parameters of the deep CNN by computing
the gradient of L, and stochastic gradient descent (SGD) is
used in back-propagation.

4. Experimental Results
In this section, we first introduce the training phases and

training data, and then discuss the factors that affect the per-
formance. Finally, we report the experimental results on

SCface [22], which is the public dataset we can find that
contain the realistic VLR faces, to verify the efficacy of the
proposed likelihood ratio based loss function.

Table 1. Composition of RIDN dataset. The table presents the
number of subjects (# Sub), the images per subject (# Ips), and
the average inter-pupillary distance (IPD) as well as the standard
deviation

Dataset # Sub # Ips IPD [pixel]

WebFace [23] 10069 1− 534 58 (5)
FERET [24] 1195 1− 24 60 (2)
CAS-PEAL [25] 1040 3− 43 61 (3)
FRGC v2 [26] 466 1− 88 126 (2)
Multi-PIE [27] 337 83− 486 72 (5)
MUCT [28] 176 7− 12 89 (6)
Faces94 [29] 153 7− 20 48 (4)
AR [30] 100 2− 6 57 (3)
PIE [31] 68 2− 5 80 (8)
ORL [32] 40 6− 10 34 (3)
Pointing 04 [33] 15 32− 42 53 (5)
Grimace [34] 12 2− 20 51 (5)

4.1. Datasets

RIDN dataset is composed of 12 public face datasets.
The training dataset has 13, 671 subjects, including
438, 139 images in total. Table 1 lists details of the data.
The facial images display illumination, expression and pose
variations. Only facial images with pose less than 30◦ in
the yaw orientation and 15◦ in the pitch orientation are in-
cluded. All images are of relatively high resolution accord-
ing to inter-pupillary distance.

SCface dataset contains facial images of 130 subjects
taken in an uncontrolled indoor environment. The facial
images are captured by five surveillance cameras at three
distances, distance1 (4.20m), distance2 (2.60m) and dis-
tance3 (1.00m), and one frontal mugshot per subject was
taken by a digital camera is included. The surveillance cam-
eras are placed slightly above the subject’s head. Some of
the collected images are blurred. Moreover, pose and light-
ing as well as quality varies for different cameras at differ-
ent distances. Facial images captured at distance1 (4.20m)
are of the poorest quality, where inter-pupillary distance is
lower than 10 pixels. Example images captured at distance1
are shown in Fig. 6.

4.2. Experimental Settings

The proposed method consists of three training phases:
(1) training the deep CNN; (2) training the likelihood ratio
classifier; (3) employing the likelihood ratio loss to fintune
the deep CNN. We will elaborate each phase below.

As for the deep CNN training, we use the RIDN as a rep-
resentative example and take the RIDN dataset for training.
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Figure 6. Examples of face images in SCface dataset which are
captured at distance1 (4.20m). Faces images originates from the
same identity are in a green box.

Any advanced network combined can be used because we
take the deep model as a feature extractor.

The second phase is the likelihood ratio classifier train-
ing. To compare fairly with the latest MRC method [18],
we stay with the same experimental settings as Ref. [18].
We consider the frontal mugshot as the enrolled image and
distance1 (4.20m) as the test images. The first 100 subjects
are selected as reference/probe combinations for likelihood
ratio classifier off-line training.

The third phase is to use the proposed loss to supervise
the deep CNN finetune. Here we randomly generate gen-
uine and impostor pairs from the 100 subjects in the SCface
dataset for training. Each person contains five VLR images
captured at distance1 and one HR image. Thus we could
get at most five genuine pairs per person, and we chose the
same number of impostor pairs. Only the last layer of deep
CNN is trained during this phase. We will discuss how the
number of image pairs affects the performance in the below.

For face recognition, we use images captured at dis-
tance1 (4.20m) as test faces, while using the HR face im-
ages taken under a controlled environment for enrollment.
The block diagram is shown in Fig. 7. More specifically, we
first extract features of images via the updated deep CNN,
and then we use the likelihood ratio classifier for face veri-
fication.
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Figure 7. Block diagram about how to use the proposed loss for
recognition.

In our experiments, all facial images from RIDN dataset
are preprocessed through face detection and facial land-
marking [35] and aligned by applying affine transformation
using four landmarks, i.e., left eye center, right eye center,
nose tip, and mouth center. We use the provided landmarks
from SCface and repeat the stated preprocessing process.
For all datasets mentioned above, HR and LR facial images

are cropped to 60× 55 and 30× 24, respectively.
The CNN is trained following the method in [21], ex-

cept that we mix five resolutions instead of four as used in
Ref. [21]. The resolution of 55×50 is added, and this results
in improved performance.

4.3. Exploratory Experiments

Effect of prior odds. Normally we assume the positive
image pair and the negative pair would appear at the same
probability. However, prior odds need to be changed under
different situations requirements. For example, when pass-
ing by the checkpoint of customs, high security is needed,
we could vary the prior odds to emphasize more to the neg-
ative pairs. Changing the prior probability can achieve dif-
ferent performance in the end (see Fig. 8). The horizontal
axis indicates the ratio of negative sample pairs to positive
sample pairs which equal to A−1. The smaller the ratio is,
the more consideration is given on the positive pairs, that
is, positive pairs have higher prior probability. If the ratio
equal is 1, it is just the same as the commonly used assump-
tion. With the ratio increases, the higher prior probability is
shifted on negative image pairs, and it gains more attention
than positive pairs do.
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Figure 8. Effect of prior odds on performance. Ns and Nd denote
the number of image pairs originates from the same person and
different individuals, respectively.

As Fig. 8 shows, we can see that higher prior odds on
a negative pair in a certain range can improve the perfor-
mance. It suggests it is more important to enlarge inter-
class variances rather than diminish intra-class variances to
improve recognition result.

Effect of number of training image pairs. Here, the
training image pairs are used to train the deep CNN super-
vised by the proposed likelihood ratio loss. We keep the
number of genuine and impostor pairs equal. Then we vary
the number of genuine and impostor pairs from 100 to 500
to compare its effect. Prior odds is set to 1, and the result is
shown in Table. 2.

From the Table. 2, we find that the use of training im-
age pairs can improve the performance compared with the
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Table 2. A different number of training image pairs affect the
recognition performance.

# genuine pairs # impostor pairs VR@FAR=0.1

100 100 88.47%

200 200 89.90%

300 300 90.19%

400 400 89.15%

500 500 89.73%

baseline performance 87.65%. The baseline performance is
achieved by the same architecture but without the use of the
proposed loss for fine-tuning. We choose the 300 genuine
and impostor pair, respectively, in the below experiment.

4.4. Results on SCface

Comparison with State-of-the-art Methods. In this
experiment, facial images of SCface captured at dis-
tance1 (4.20m) are compared to mugshots. The best per-
formance reported in the literature is of RIDN [21] and
MRC [18]. The comparison results of face verification pro-
tocols are listed in Table 3. The proposed baseline approach
uses the deep CNN and likelihood ratio classifier but don’t
apply the likelihood ratio loss function to finetune the net-
work. The best performance is achieved under the prior
odds Nd/Ns = 1.7 and the detail about how the prior odds
affect the recognition results can be seen in Fig. 8.

Table 3. Face recognition results on the SCface dataset.

Methods VR@FAR=0.1

RIDN [21] 70(3)%

MRC [18] 73(6)%

Proposed Baseline 87.65%

Proposed Loss 90.50%

5. Conclusion

The results obtained by the proposed likelihood ratio
based loss are promising. The proposed loss can be used in
any specific applications with the existing deep model, and
only small training image pairs are needed for the network
training. In this paper, we use the VLR face recognition task
as a case to show that the performance can be improved with
the likelihood ratio loss. To our best knowledge, this work
is the first (i) for exploring the likelihood ratio, into the loss
design, and (ii) for introducing the proposed loss function
to improve the performance of VLR face recognition.
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