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Abstract: Cascaded regression has been recently applied to reconstruct 3D faces from single 2D images directly
in shape space, and has achieved state-of-the-art performance. We investigate thoroughly such cascaded regression
based 3D face reconstruction approaches from four perspectives that are not well been studied: (1) the impact of the
number of 2D landmarks; (2) the impact of the number of 3D vertices; (3) the way of using standalone automated
landmark detection methods; (4) the convergence property. To answer these questions, a simplified cascaded
regression based 3D face reconstruction method is devised. This can be integrated with standalone automated
landmark detection methods and reconstruct 3D face shapes that have the same pose and expression as the input
face images, rather than normalized pose and expression. An effective training method is also proposed by disturbing
the automatically detected landmarks. Comprehensive evaluation experiments have been carried out to compare to
other 3D face reconstruction methods. The results not only deepen the understanding of cascaded regression based
3D face reconstruction approaches, but also prove the effectiveness of the proposed method.
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1 Introduction

As a fundamental problem in computer vi-
sion, reconstructing three-dimensional (3D) face
shapes from two-dimensional (2D) images has re-
cently gained increasing attention because a 3D face
provides invariant features to the variations of pose,
illumination, and expression. The reconstructed 3D
faces are therefore useful for many real-world appli-
cations, for example, pose robust face recognition
(Blanz and Vetter, 2003; Han and Jain, 2012; Hu
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et al., 2014; Zhu XY et al., 2015), 3D facial expres-
sion analysis (Chu et al., 2014; Ren et al., 2016), and
facial animation (Cao et al., 2014a; 2016). Using
3D face shapes to recognize identities is believed to
be more robust and more accurate than using only
2D face images (Abiantun et al., 2014). Despite its
high recognition accuracy, fast acquisition of high-
resolution and high-precision 3D face shapes is still
difficult, especially under varying conditions or at a
long distance. On the other hand, 2D face images can
be much more easily captured with available cam-
eras, and there are already a lot of 2D face image
databases. Thus, there is great interest in devel-
oping efficient methods for reconstructing 3D faces
from 2D face images such that the rich resources of
2D face images and facilities can be better used.

Liu et al. (2016) recently proposed a novel
method for reconstructing 3D face shapes from sin-
gle 2D images via cascaded regression in a 2D/3D
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shape space. It is based on the observation that
the landmarks’ locations on the 2D image can be
derived from the reconstructed 3D shape, and the
displacement of derived landmarks from their true
positions is correlated with the accuracy of the re-
constructed 3D shape. This method can simulta-
neously locate facial landmarks and reconstruct 3D
face shapes with two sets of cascaded regressors: one
for updating landmarks and the other for 3D face
shapes. By effectively exploring the correlation be-
tween 2D landmarks and 3D shapes, this method
achieves state-of-the-art performance in both face
alignment and 3D face reconstruction for face im-
ages of an arbitrary view and expression. However,
some problems are still not well addressed in such
shape space regression based 3D face reconstruction
methods.

1. Impact of the number of 2D landmarks. Dif-
ferent sets of 2D landmarks are used in the face align-
ment and recognition literature, e.g., 68 landmarks
(Sagonas et al., 2013), 21 landmarks (Köstinger
et al., 2011), and 5 landmarks (Sun et al., 2013).
How will the 3D face reconstruction accuracy be af-
fected if different numbers of 2D landmarks are used
to guide the 3D face reconstruction process?

2. Impact of the number of 3D vertices. 3D face
shapes can be represented by different numbers of
vertices, i.e., different 3D point cloud densities and
coverage. Will a sparse or narrow 3D face shape be
much easier to reconstruct with a higher accuracy
than a dense or wide 3D face shape? Note that a
wide 3D face shape covers more areas than a narrow
3D face shape. For instance, a 3D face shape cover-
ing only eyes, eyebrows, nose, and mouth is narrow
compared with a 3D face shape covering the area
from the left ear to the right ear.

3. What if using standalone landmark localiza-
tion methods? Although the method mentioned in
Liu et al. (2016) can simultaneously locate 2D land-
marks and reconstruct 3D shapes, it requires that
the training 2D face images should be annotated
with both visible and invisible landmarks. Manu-
ally marking invisible landmarks is, however, very
difficult and error-prone. Is it possible to integrate
standalone landmark localization methods with the
3D face reconstruction process proposed in Liu et al.
(2016)?

4. Convergence. As an iterative approach, how
many iterations would be necessary for the pro-

posed method to achieve an acceptable perfor-
mance in terms of both accuracy and efficiency? In
other words, what is the convergence property of
shape space regression based 3D face reconstruction
methods?

We aim to investigate the shape space regres-
sion based 3D face reconstruction approach from the
four aforementioned aspects. To this end, we first
revise and implement the method in Liu et al. (2016)
so that the 3D face reconstruction process can take
2D landmarks that are provided by a third party
as the input, and reconstruct 3D face shapes that
have the same pose and expression as the input im-
ages, rather than frontal pose and neutral expres-
sion. Fig. 1 shows the results of the method on some
photos from the AFW database (Zhu and Ramanan,
2012) using the ground-truth visible 2D landmarks as
the input. We then experimentally evaluate the con-
vergence and computational complexity of the imple-
mented 3D face reconstruction method. Afterwards,
we conduct extensive experiments to assess the im-
pact of the number of 2D landmarks and the number
of 3D vertices on reconstruction accuracy. We fi-
nally attempt to integrate state-of-the-art landmark
localization methods to the 3D face reconstruction
process.

Fig. 1 Reconstruction results of the proposed method
on face images from the AFW database (Zhu and
Ramanan, 2012) with arbitrary expressions and poses

2 Related work

To solve the intrinsically ill-posed single-view
3D face reconstruction problem, different priors or
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constraints have been introduced, resulting in the
shape from shading (SFS) based methods and 3D
morphable model (3DMM) based methods. SFS
based methods (Horn and Brooks, 1989; Barron and
Malik, 2012) recover 3D shapes via analyzing cer-
tain clues in the 2D texture images, with an assump-
tion of the Lambertian reflectance and a single-point
light source at infinity. While classical SFS based
methods (Kemelmacher-Shlizerman and Basri, 2011;
Suwajanakorn et al., 2014; Li et al., 2015; Zeng et al.,
2017) are initially designed for generic 3D shape re-
construction, their performances in recovering 3D
face shapes can be further improved by using some
reference 3D face models as additional constraints.
These methods usually have limited accuracy be-
cause: (1) their assumed connection between 2D tex-
ture clues and 3D shape information is too weak to
discriminate between different human faces; (2) they
do not fully exploit the prior knowledge of 3D faces
and significantly depend on the reference models; (3)
they reconstruct a depth map or 2.5D shape instead
of a 3D full shape since they tend to operate on a
face with a narrow range of poses.

The 3D morphable model (3DMM) (Blanz and
Vetter, 1999; Romdhani and Vetter, 2005; Aldrian
and Smith, 2013; Zhu XY et al., 2014; 2015; Bas et
al., 2016; Booth et al., 2016), as a typical statistical
3D face model, explicitly learns the prior knowledge
of 3D faces with a statistical parametric model. It
represents a 3D face as a linear combination of basis
3D faces, which are obtained by applying the prin-
cipal component analysis (PCA) on a set of densely
aligned 3D faces. To recover the 3D face from a
2D image, the combination coefficients are estimated
by minimizing the discrepancy between the input
2D face image and the one rendered from the re-
constructed 3D face. These 3DMM based methods
can better cope with 2D images of varying illumina-
tions and poses. However, they are limited in indi-
vidualized or detailed reconstruction because PCA
conducts global modeling in essence, and they in-
volve a time-consuming on-line optimization process
to search for the optimal solution in the parame-
ter space. Moreover, 3DMM needs an additional
linear expression model to handle facial expressions,
namely E-3DMM (Cao et al., 2014b; Chu et al., 2014;
Zhu XY et al., 2015). However, neither SFS-based
nor 3DMM-based methods can consistently well cope
with rotated or expressive face images due to invisi-

ble or deformed facial landmarks on them.
Motivated by the success of cascaded regression

in 2D facial landmark localization (Xiong and de
la Torre, 2013; Jourabloo and Liu, 2015; 2017; Li
et al., 2016), Liu et al. (2016) recently proposed a
2D/3D shape space regression based method for re-
constructing 3D face shapes from single images of
arbitrary views and expressions. The method alter-
nately applies 2D landmark regressors and 3D shape
regressors. The 2D landmark regressors estimate
landmark locations by regressing over the texture
features around landmarks, while the 3D shape re-
gressors reconstruct 3D face shapes via regressing
over the 2D landmarks. Unlike existing 3D face
reconstruction methods, this method directly esti-
mates 3D faces in the 3D shape space via cascaded
regression, getting rid of parameterized 3D face mod-
els and assumed illumination models. As a result, it
achieves state-of-the-art performance on both accu-
racy and efficiency of 3D face reconstruction. Fig. 2
shows example results of SFS-based, 3DMM-based,
E-3DMM-based, and shape-space-regression-based
methods on rotated and expressive face images. In
this study, we will thoroughly assess the effective-
ness of such shape space regression based 3D face
reconstruction methods from various perspectives.

Input image GT 3DMM E-3DMM SFS Ours

Fig. 2 Reconstruction results for images in the Basel
face model (BFM) (top row) (Paysan et al., 2009) and
BU3DFE (bottom row) (Yin et al., 2006) databases.
From the left to the right columns: input images,
ground-truth 3D shapes (GT), results by 3DMM (Bas
et al., 2016), E-3DMM (Zhu XY et al., 2015), SFS
(Kemelmacher-Shlizerman and Basri, 2011), and the
proposed method

3 Shape space regression based ap-
proach

3.1 Overview

We denote a 3D face shape as S ∈ R
3×n, which

is represented by 3D locations of n vertices, and
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denote SL as a subset of S with columns correspond-
ing to l annotated landmarks (e.g., eye corners and
nose tip). The projection of these 3D landmarks on
the 2D face image I is represented by U ∈ R

2×l. The
relationship between 2D facial landmarks U and its
corresponding 3D landmarks SL can be described as

U = MSL = MDN (RS̃L + T ), (1)

where S̃ is a frontal 3D face with a neutral expres-
sion, {R ∈ R

3×3, T ∈ R
3×l}, and DN (·) are, respec-

tively, rigid deformation (i.e., rotation and transla-
tion) caused by pose variations and a non-rigid de-
formation function caused by expression variations
that occur to S̃ resulting in the observed 3D face
S, and M ∈ R

2×3 is the camera projection matrix.
Here, we employ a weak perspective projection for
M as conventionally done in Zhou et al. (2015).

Our purpose is to reconstruct S (rather than S̃)
from the given ‘ground-truth’ visible landmarks U∗

(either manually marked or automatically detected
by a standalone method) for the face image I. As dis-
cussed above, we achieve this by iteratively updating
the initial estimate of S with a series of regressors
in the 3D face shape space. These regressors calcu-
late the adjustment to the estimated 3D face shape
according to the deviation between the ground-truth
landmarks and the landmarks rendered from the es-
timated 3D face shape. Fig. 3 shows the flowchart of
the proposed method.

Input image with anno-
tated 2D landmarks S0 S1 SK

W W W

Testing

Training

3D face 
shapes S

2D images (I) with 
landmarks (U)

Learning regressors 
in shape space 
∆S=W(∆U)

Cascaded 
regressors{W

1 2 K

}1
k K

Fig. 3 Flowchart of the shape space cascaded regres-
sion based 3D face reconstruction method. Green and
red points denote visible and invisible landmarks, re-
spectively. Note that the method in this study does
not require invisible landmarks’ locations as the in-
put. References to color refer to the online version of
this figure

3.2 Reconstruction process

Let U∗ be the ‘ground-truth’ landmarks (either
manually annotated or automatically detected) on
an input 2D image, and Sk−1 is the currently re-
constructed 3D shape after (k − 1) iterations. The
corresponding landmarks Uk−1 can be obtained by
projecting Sk−1 onto the image according to Eq. (1).
Then the updated 3D shape Sk can be computed by

Sk = Sk−1 +W k(U∗ −Uk−1) + bk, (2)

where W k is the regressor in the kth iteration and
bk is a bias term (in the rest of this paper we omit
the bias term for simplicity because it can be shrunk
into the regressors).

3.3 Learning cascaded regressors

The K regressors {W k}K1 involved in the re-
construction process can be learned via optimizing
the following objective function over the N training
samples:

argmin
W k

N∑

i=1

‖(S∗
i −Sk−1

i )−W k(U∗
i −Uk−1

i )‖2, (3)

where {S∗
i ,U

∗
i } is a training sample consisting of

ground-truth landmarks on the ith 2D face image
and its corresponding ground-truth 3D face shape
that has the same pose and expression as the face im-
age. Mathematically, the above optimization seeks a
regressor that can minimize the overall error of the
entire reconstructed 3D face shapes, but not merely
the error at the landmarks.

In this study, we use linear regressors W k ∈
R

3n×2l. Then the optimization (3) can be easily
solved by using least squares methods with a solution
of

W k = ΔSk(ΔUk)T(ΔUk(ΔUk)T)−1, (4)

where ΔSk = S∗−Sk−1 and ΔUk = U∗−Uk−1 are
3D shape adjustment and 2D landmark deviation,
respectively. S ∈ R

3n×N and U ∈ R
2l×N denote,

respectively, the ensemble of 3D face shapes and 2D
landmarks of all training samples with each column
corresponding to one sample. Note that we write
the 3D face shape and 2D landmarks as column vec-
tors: S = (x1, y1, z1, x2, y2, z2, . . . , xn, yn, zn)

T and
U = (u1, v1, u2, v2, . . . , ul, vl)

T. To ensure a valid
solution in Eq. (4), N should be larger than 2l so
that ΔUk(ΔUk)T is invertible. Fortunately, since
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the sets of used landmarks are usually sparse, this
requirement can be easily satisfied in real-world ap-
plications. The whole process of learning the cas-
caded regressors is summarized in Algorithm 1.

Algorithm 1 3D cascaded regressor learning
Input: Training data {(Ii,S∗

i ,U
∗
i ) | i = 1, 2, . . . , N};

initial shape S0
i ; camera projection matrix M .

1: for k = 1 to K do
2: Estimate 2D projection Uk−1

i from current 3D
face Sk−1

i via Eq. (1);
3: Compute 2D landmark adjustment and 3D face

adjustment for all samples:
ΔUk = U∗ −Uk−1, ΔSk = S∗ − Sk−1;

4: Estimate W k via Eq. (3);
5: Update 3D face Sk

i via Eq. (2);
6: end for
Output: Cascaded regressors {W k}Kk=1.

4 Implementation details

4.1 Initialization

The proposed iterative method has two terms to
initialize: the initial 3D face shape S0 and the cam-
era projection matrix M . Given the set of training
samples, we select all the frontal faces with a neu-
tral expression. The mean of these selected 3D face
shapes is computed and used to initialize S0. Sim-
ilarly, the mean of their 2D landmarks is calculated
and denoted as U0. The camera projection matrix
M can then be estimated by solving the following
least squares fitting problem:

M = argmin
M

‖U0 −MS0
L‖22. (5)

The obtained projection matrix M is used through-
out the 3D face reconstruction process to render 2D
landmarks from the reconstructed 3D face shapes.

4.2 Landmarks

Fig. 4 depicts the 68 facial landmarks (l = 68)

considered in this study. Obviously, some of the land-
marks will become invisible on the 2D face image due
to self-occlusion when the face has large pose angles.
These invisible landmarks are difficult to precisely
annotate. Hence, we treat them as missing data
and fill their corresponding entries in U with zero.
In this way, these invisible landmarks will not affect
the reconstruction, and thus images of arbitrary pose
angles can be handled in a unified framework.

Fig. 4 Sixty-eight landmarks are used in this study.
Left: landmarks annotated on a 3D face. Middle and
right: corresponding landmarks annotated on its 2D
images with yaw angles of 20◦ and 40◦, respectively.
Green and red points on the 2D images indicate, re-
spectively, visible and invisibile landmarks, and blue
points mark the contour instead of semantic land-
marks. References to color refer to the online version
of this figure

To automatically detect the visible landmarks in
the testing phase, we first employ a state-of-the-art
face alignment approach to automatically locate 2D
landmarks positions, and then compute their visibil-
ity. Most conventional face alignment methods like
the one proposed by Kazemi and Sullivan (2014) can-
not detect invisible self-occluded landmarks (refer to
the red points in Fig. 4). To determine the visibility
of 2D landmarks projected from the reconstructed
3D face shape, given the detected 2D landmarks U

on the face image and the 3D annotated landmarks
S0

L from the initial 3D shape S0, we coarsely esti-
mate the camera projection matrix M by Eq. (5).
Suppose the 3D surface normal at landmarks in S0

is N . The initial visibility v can then be measured
by (Jourabloo and Liu, 2016)

v =
1

2

(
1 + sgn

(
N ·

(
M1

‖M1‖ × M2

‖M2‖
)))

, (6)

where sgn(·) is the sign function, ‘·’ means dot prod-
uct, and ‘×’ cross-product. M1 and M2 are the left-
most three elements at the first and second rows of
the mapping matrix M , respectively. This basically
rotates the surface normal and validates whether it
points toward the camera or not. Finally, to main-
tain consistency with the training setting, the invis-
ible corresponding entries in U should be filled with
zero.

4.3 Alignment

To simplify the camera projection model, we as-
sume that both 3D face shapes and 2D landmarks are
well aligned. Specifically, (1) all the 3D face shapes
have been established as point-to-point dense regis-
tration (i.e., they have the same number of vertices,
and the vertices of the same index have the same
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semantic meaning), (2) all the 3D face shapes are
centered at the origin of the world coordinate sys-
tem, and (3) all the faces on the 2D images are also
centered in the image coordinate system. With these
aligned 3D & 2D face data, and as we separate face
deformation from camera projection (Eq. (1)), the
employed weak perspective camera projection ma-
trix M has only one free parameter, i.e., the scaling
factor or focal length, which will be estimated based
on the training data.

5 Experimental results

5.1 Training data

A set of 3D face shapes and corresponding 2D
face images with annotated landmarks are needed to
train regressors in the proposed method. To make
the trained regressors robust to pose and expression
variations, samples in the training dataset should
have good diversity in their poses and expressions.
However, it is difficult to find (in the public do-
main) such datasets of 3D face shapes and corre-
sponding annotated 2D images with various expres-
sions/poses. Therefore, we use the Basel face model
(BFM) (Paysan et al., 2009) to construct synthetic
3D faces of 200 subjects (50% female), and use the
expression model from Face Warehouse (Cao et al.,
2014b) to generate random expressions on each of
the 3D faces. These expressive 3D faces are then
projected onto 2D images with 55 views of 11 yaw
(0◦, ±15◦, ±30◦, ±50◦, ±70◦, ±90◦) and 5 pitch (0◦,
±15◦, ±30◦) rotations, resulting in a total number of
11 000 3D faces and corresponding synthetic images.
Each 3D face consists of 53 215 vertices (the original
BFM model has 53 490 vertices, but we discard the
vertices in the tongue region). The 2D image reso-
lution is 875×656 pixels and the inter-eye distance
is about 220 pixels. The 68 landmarks on each 2D
face image are recorded during the projection process
(the 3D faces are densely aligned and the indices of
the landmarks are known), and the invisible land-
marks are marked as zero as mentioned above.

5.2 Convergence and computational complex-
ity

We experimentally investigate the convergence
of the training process of the proposed cascaded re-
gressors. For this, we record the value of the ob-

jective function defined in Eq. (3) at each iteration
during the training process. Fig. 5 shows the objec-
tive function value for 10 iterations. Clearly, the ob-
jective function value decreases substantially in the
first five iterations and becomes stable after seven it-
erations. This demonstrates the good convergence of
the proposed method. In the following experiments,
we empirically set K = 5 as a trade-off between ac-
curacy and efficiency.

According to our experiments on a PC with an
i7-4710 CPU and 8 GB memory, the Matlab imple-
mentation of the proposed method runs at nearly 26
frames per second. This indicates that the proposed
method can reconstruct 3D faces in real time.
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Fig. 5 Objective function values as the iteration
proceeds

5.3 Reconstruction accuracy across poses on
BFM

The BFM database (Paysan et al., 2009) pro-
vides 10 test face subjects, each of whom has nine
face images of neutral expression and different poses,
including one frontal and eight yaw poses (±15◦,
±30◦, ±50◦, ±70◦). Here, the metric used to evalu-
ate the 3D face shape reconstruction accuracy is the
mean absolute error (MAE), which is defined as

MAE =
1

NT

NT∑

i=1

(‖S∗
i − Ŝi‖/n), (7)

where NT is the total number of test samples, ‖S∗
i −

Ŝi‖ is the Euclidean distance between ground-truth
shape S∗

i and reconstructed 3D shape Ŝi of the ith

test sample. We report the MAE after Procrustes
alignment.

In this experiment, we use the visible land-
marks projected from ground-truth 3D face shapes as
the input. The proposed method is compared with
several state-of-the-art methods based on 3DMM,
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including the approach proposed by Aldrian and
Smith (2013), the multi-feature 3DMM framework
based on contours, textured edges, specular high-
lights, and pixel intensity proposed by Romdhani
and Vetter (2005), sparse SIFT flow 3DMM (SSF-
3DMM (Zhu et al., 2014)), and the edge-fitting based
3DMM approach proposed by Bas et al. (2016).

Table 1 shows the MAE of different methods on
the BFM database with respect to different poses
of face images. Obviously, the average MAE of the
proposed method is lower than the counterpart of
other methods. Moreover, its accuracy is quite sta-
ble across different poses. This proves the effective-
ness of the proposed method in handling face images
of arbitrary poses. Fig. 6 shows the reconstruction
results of our method and SSF-3DMM (Zhu et al.,
2014) on two subjects in the BFM database.

5.4 Impact of the number of 2D landmarks

To assess how the reconstruction accuracy
changes as fewer landmarks are used, we divide a face
into four regions, i.e., nose, eyes, mouth, and others
(Fig. 7), and use different numbers of landmarks in
these regions. Note that the number of vertices in
the output reconstructed 3D face shape remains un-
changed. Fig. 7 shows the results, from which the
following two observations can be made: (1) While
using more landmarks boosts the reconstruction ac-
curacy for all regions, the gains of different regions
are not uniform; (2) When similar numbers of land-
marks (e.g., seven to nine landmarks) are used, the
region of eyes achieves the smallest error among the
four regions, and the error of nose region is relatively
high. A possible explanation is due to the varying
complexity of different regions and to the different
significance of different landmarks. Moreover, in the
above experiment, the nose landmarks do not dis-
tribute along the nose contour, whereas the land-

marks in eyes and mouth regions profile these two
regions. This might be another reason why the re-
construction error of the nose region is larger than
that of eyes and mouth regions. For a better evalua-
tion of the impact of 2D landmarks, more extensive
experiment is required, which will be part of our fu-
ture work. In the following experiments, we will use
the set of 68 landmarks (unless specified otherwise).

5.5 Impact of the number of 3D vertices

In this experiment, we study the reconstruction
precision of 3D face shapes with different numbers
of vertices. As we know, facial components includ-
ing eyes, nose, mouth, and eye-brows are the most
discriminative parts for face recognition, and thus
it is required that more accurate facial component
shapes can be obtained. Being aware of this, we as-
sess the reconstruction accuracy as fewer non-facial-
component vertices are used (i.e., the coverage of the
3D point cloud becomes more focused on facial com-
ponents) and the number of input 2D landmarks re-
mains unchanged (i.e., 51 landmarks located on nose,
eyes, and mouth are used). Two MAEs are computed
based on the whole set of 3D vertices and on the sub-
set of facial component vertices, respectively. From
the results in Fig. 8, the MAE over the whole set
increases (by more than 0.5 mm) as more non-facial-
component vertices are required to be reconstructed.
This is because the landmarks used do not provide
sufficient constraints on non-facial-component ver-
tices. In contrast, the MAE over the facial com-
ponent vertex subset is not affected by the vertices
outside the facial component area. From Eq. (2), we
discover that every vertex in the reconstructed 3D
face shape is fully determined by the input land-
marks, and different vertices are independent of each
other in their reconstruction errors.

In addition, we fix the coverage of 3D point

Table 1 Mean absolute errors (MAEs) of the proposed method and four state-of-the-art methods at different
poses with ground-truth landmarks

Method
MAE (mm)

Mean (mm)
−70◦ −50◦ −30◦ −15◦ 0◦ 15◦ 30◦ 50◦ 70◦

Romdhani and Vetter (2005) 2.65 2.59 2.58 2.61 2.59 2.50 2.50 2.46 2.51 2.55
Aldrian and Smith (2013) 2.64 2.60 2.58 2.64 2.56 2.49 2.50 2.54 2.63 2.58
Zhu et al. (2014) 3.45 2.81 3.71 4.62 4.97 4.81 3.74 2.98 3.19 3.81
Bas et al. (2016) 2.35 2.26 2.38 2.40 2.51 2.39 2.40 2.20 2.26 2.35
Ours 2.29 2.30 2.35 2.29 2.31 2.27 2.36 2.21 2.32 2.30
Bold numbers denote the best results
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70° 50° 30° 0°15° –15° –30° –50° –70°

2.48±1.44 2.48±1.45 2.65±1.53 2.36±1.402.58±1.54 2.60±1.37 2.17±1.40 2.33±1.312.39±1.37

3.06±1.58 2.75±1.24 4.87±2.12 3.74±1.873.73±1.76 5.02±2.72 2.81±1.28 2.61±1.345.26±2.40

1.64±0.86 1.51±0.85 1.48±0.85 1.66±0.861.54±0.83 1.52±0.92 1.58±0.78 1.62±0.731.51±0.87

3.08±1.67 2.33±1.01 3.81±1.47 3.24±1.262.76±1.05 4.31±2.45 2.62±1.13 2.64±1.474.56±1.89

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(i)

(j)

(h)

Fig. 6 Reconstruction results for two BFM samples at nine different poses: (a) and (f) are the input images;
(b) and (g) are the reconstructed 3D face shapes by the SSF-3DMM method (Zhu et al., 2014); (d) and (i) are
those by the proposed method; (c) and (h) are the corresponding MAE error maps of the SSF-3DMM method;
(e) and (j) are those by the proposed method. The colormap goes from dark blue to dark red (corresponding
to an error from [0, 10]). The numbers under each of the error maps represent mean and standard deviation
values (mm). References to color refer to the online version of this figure

cloud to the facial component region, and evaluate
the reconstruction accuracy when different numbers
of 3D vertices in that region are reconstructed (i.e.,

the point cloud density changes by, for example,
uniform downsampling). Fig. 9 indicates that the
overall reconstruction accuracy is reduced slightly
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Fig. 7 MAEs of the proposed method in nose, eyes,
mouse, and the other regions on the BFM test sam-
ples when different 2D landmarks are used. The bot-
tom row shows the vertex-wise MAE maps, in which
errors increase from blue to red. References to color
refer to the online version of this figure
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Fig. 8 MAEs of the proposed method over the whole
set of 3D vertices (blue curve) and the subset of fa-
cial component vertices (red curve) on the BFM test
samples as more vertices are included in the recon-
structed 3D face shape and the 51 landmarks used
remain unchanged. The vertex-wise MAE map shows
the MAE per vertex in the 3D face (errors increase
from blue to red). References to color refer to the
online version of this figure

(by less than 0.001 mm) as the number of recon-
structed 3D vertices decreases. This is again mainly
because of the independence between different ver-
tices as mentioned before. On the other hand, solv-
ing the optimization problem (3) is essentially to
make a balance of reconstruction errors both among
all training samples and among all the vertices in
the reconstructed 3D face shape. Thus, different sets
of vertices will theoretically result in different ‘bal-
ances’. Fortunately, as long as the 2D landmarks can
provide sufficient constraints on the reconstructed
region of the 3D face, the point cloud density in
the reconstructed 3D face region has little effect on
the reconstruction accuracy (Fig. 8 shows that addi-
tional vertices outside the facial component region do

26 382 13 216 6 633
Number of vertices

1.7772

1.7770

1.7768

M
AE

 (m
m

)

Fig. 9 MAEs of the proposed method over a fixed
region of a 3D face when different numbers of vertices
are used to represent that region

not change the reconstruction accuracy inside that
region when facial component landmarks are used to
guide the reconstruction). This is a favorite prop-
erty of the proposed method, which enables people
to reconstruct 3D faces of a higher resolution at the
same precision without extra cost except for com-
putational complexity (due to a higher dimensional
regression output).

5.6 Using standalone landmark localization
methods

In the above evaluation experiments, the 2D vis-
ible landmarks are obtained from the ground-truth
3D shapes. In this experiment we use landmarks that
are automatically detected by several different meth-
ods, including SDM (Xiong and de la Torre, 2013),
DLIB (Kazemi and Sullivan, 2014), TCDCN (Zhang
et al., 2014), and CFSS (Zhu SZ et al., 2015), as the
‘ground-truth’ landmarks. Considering the poten-
tial errors in automatically detected landmarks, we
disturb the ground-truth landmarks of training data
by zero-mean Gaussian noise with a standard devia-
tion of 25 to improve the robustness of the obtained
regressors. We conduct two series of experiments:
(1) training using data with ground-truth landmarks
(denoted as Proposed I); (2) training using data
with disturbed landmarks (denoted as Proposed II).
In this experiment, the approaches of Romdhani
and Vetter (2005), E-3DMM (Zhu XY et al., 2015),
and Bas et al. (2016) are selected as the base-
lines. We use the authors’ own implementations with
automatically detected landmarks. In this more
challenging scenario, as shown in Table 2, our
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Table 2 Mean absolute errors (MAEs) with automatically detected landmarks at different rotation angles on
the BFM database

Method
MAE (mm)

Mean (mm)
−50◦ −30◦ −15◦ 0◦ 15◦ 30◦ 50◦

Romdhani and Vetter (2005) 3.42 3.66 3.78 3.77 3.57 4.31 4.19 3.81
Zhu XY et al. (2015) N/A 4.63 5.09 4.19 5.22 4.92 N/A N/A
Bas et al. (2016) 3.20 3.19 3.09 3.30 3.36 3.36 3.84 3.33
Proposed I + SDM 4.60 3.28 3.72 3.69 3.67 3.44 4.51 3.84
Proposed I + DLIB 3.64 3.37 3.17 3.22 3.21 3.44 3.33 3.34
Proposed I + TCDCN 3.69 3.40 3.22 3.48 3.58 3.50 3.54 3.49
Proposed I + CFSS 3.34 3.48 3.27 3.39 3.22 3.41 3.52 3.38

Proposed II + SDM 3.06 2.92 3.23 3.13 3.34 3.29 3.18 3.16
Proposed II + DLIB 3.13 3.06 3.03 3.04 3.03 3.05 3.02 3.05
Proposed II + TCDCN 3.29 3.15 3.11 3.19 3.20 3.24 3.30 3.21
Proposed II + CFSS 3.17 3.04 3.00 3.01 3.01 3.08 3.26 3.08

N/A: not available. Bold numbers denote the best results

method trained with disturbed landmarks gives the
best overall performance and is superior for all pose
angles, especially with the DLIB face alignment
method. Compared with the results obtained by us-
ing the landmarks generated from ground-truth 3D
face shapes in Table 1, the accuracy by using au-
tomatically detected landmarks is worse (MAE has
been increased from 2.30 mm to 3.34 mm), but can
be successfully improved via disturbing the detected
landmarks during training (3.05 mm).

5.7 Reconstruction accuracy across expres-
sions on BU3DFE

The BU3DFE database (Yin et al., 2006) con-
tains 3D faces of 100 subjects displaying seven ex-
pressions of: neutral (NE), happiness (HA), disgust
(DI), fear (FE), anger (AN), surprise (SU), and sad-
ness (SA). All non-neutral expressions are acquired
at four levels of intensity. We select neutral and the
first level intensity of the remaining six expressions
as testing sets, resulting in 700 testing samples. The
reconstruction error is measured by the normalized
per-vertex depth error (NPDE). NPDE is defined by
the depth error at each vertex of the test sample as

NPDE(xj , yj) = (|z∗j − ẑj |)/(z∗max − z∗min), (8)

where z∗max and z∗min are the maximum and min-
imum depth values in the ground-truth 3D face
shape of the test sample respectively, and z∗j and ẑj
are the ground-truth and reconstructed depth val-
ues at the jth vertex respectively. Fig. 10 shows
the accuracy of the proposed method as well as

SFS E-3DMM Ours

NE HA FE SA AN DI SU
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2
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Fig. 10 Average normalized per-vertex depth er-
rors (NPDEs) of the proposed and two counterpart
methods for different expressions in the BU3DFE
database. References to color refer to the online ver-
sion of this figure

two counterpart methods for different expressions
in the BU3DFE database. It can be seen that
the proposed method achieves the lowest error for
all the expressions. It successfully reduces the
overall average reconstruction error from 4.89% of
SFS (Kemelmacher-Shlizerman and Basri, 2011) and
3.10% of E-3DMM (Zhu XY et al., 2015) to 2.03%.
Fig. 11 shows the reconstruction results of our
method, SFS (Kemelmacher-Shlizerman and Basri,
2011), and E-3DMM (Zhu XY et al., 2015) on one
subject under seven expressions.

5.8 Reconstruction accuracy for uncon-
strained face images on MICC

The MICC database (Bagdanov et al., 2011)
contains three challenging face video clips and a
ground-truth 3D face model for each of 53 sub-
jects. The videos span the range of controlled in-
door to challenging unconstrained outdoor settings.
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NE HA FE SA AN DI SU

2.53±1.89% 3.76±2.54% 4.00±2.74% 4.38±2.79% 4.28±2.83% 4.58±3.12% 4.72±2.91%

2.28±2.75% 2.91±2.84% 2.76±2.56% 2.43±2.49% 2.28±2.52% 2.40±2.33% 2.48±2.37%

1.12±0.94% 1.36±1.11% 1.21±1.05% 1.25±1.02% 1.20±0.91% 1.27±1.53% 1.46±1.32%

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 11 Reconstruction results for the BU3DFE samples at seven different expressions: (a) the input images;
(b), (d), and (f) are the reconstructed 3D face shapes by the method of SFS (Kemelmacher-Shlizerman and
Basri, 2011), E-3DMM (Zhu XY et al., 2015), and the proposed method, respectively; (c), (e), and (g) are the
corresponding NPDE maps by the method of SFS, E-3DMM, and the proposed method, respectively. The
colormap goes from dark blue to dark red (corresponding to an error from [0, 10]). The numbers under each
of the error maps represent mean and standard deviation values in percent. References to color refer to the
online version of this figure

The recorded outdoor videos are very challenging be-
cause of the uncontrolled lighting conditions. In this
experiment, we use the outdoor videos as the input
and randomly select 4 000 face images from 31 466
frames of the 53 subjects. Again, the four different
automated face alignment methods are employed to

detect the landmarks on the selected unconstrained
face images. The cascaded regressor model is trained
using data with disturbed landmarks, as introduced
in Section 5.6. Fig. 12 shows the reconstruction re-
sults of the proposed method for three samples in
MICC. Note that the ground-truth 3D face shapes in



Liu et al. / Front Inform Technol Electron Eng 2017 18(12):1978-1990 1989

Input image GT Ours Ours-GT

1.81±0.82

1.84±0.90

1.82±0.87

Fig. 12 Reconstruction results of the proposed
method on three samples from the MICC database.
From the first to the fourth columns: input images,
ground-truth 3D shapes, reconstructed 3D shapes by
the proposed method, and the corresponding MAE
error maps, respectively

MICC have different numbers of vertices from the 3D
face shapes reconstructed by the proposed method.
Thus, we apply Procrustes alignment to the 3D face
shapes and crop face regions around the nose tip with
a radius of 95 mm. Based on the cropped face re-
gions, we compute MAEs, and the results are shown
in Table 3. Clearly, the proposed method also works
for unconstrained face images.

Table 3 Mean absolute errors (MAEs) of the pro-
posed method with landmarks automatically detected
by different alignment methods on MICC

Alignment method SDM DLIB TCDCN CFSS

MAE (mm) 2.56 2.52 2.69 2.64

6 Conclusions

In this paper, we have thoroughly investigated
the cascaded regression based 3D face reconstruction
approach recently proposed in Liu et al. (2016). Our
experimental results showed that: (1) more land-
marks are generally helpful for accurate 3D face re-
construction, but different facial components have
different gains from the increased number of land-
marks; (2) the overall 3D face reconstruction accu-
racy will be degraded if more areas are covered by
the reconstructed 3D faces while the used landmarks
remain the same; (3) the reconstruction accuracy for
a specific face area is not affected by the 3D point
cloud density in that area or the 3D vertices out-
side that area as long as the input landmarks are not

changed; (4) using standalone automated facial land-
mark detection methods together with the cascaded
regression based 3D face reconstruction methods is
feasible, and the reconstruction accuracy can be im-
proved by disturbing the detected landmarks during
training; (5) the cascaded regression based 3D face
reconstruction methods have good convergence. In
addition, the revised reconstruction method together
with its training method provides a feasible alterna-
tive approach to 3D face reconstruction, for which
the training data can be more easily prepared than
in Liu et al. (2016) because invisible landmarks’ lo-
cations are not required to be annotated. In the fu-
ture, given the impressive accuracy and efficiency of
the cascaded regression based 3D face reconstruction
approach, we are going to apply it to unconstrained
face recognition in real-world scenarios.
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