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Abstract. We present an approach to simultaneously solve the two
problems of face alignment and 3D face reconstruction from an input
2D face image of arbitrary poses and expressions. The proposed method
iteratively and alternately applies two sets of cascaded regressors, one for
updating 2D landmarks and the other for updating reconstructed pose-
expression-normalized (PEN) 3D face shape. The 3D face shape and the
landmarks are correlated via a 3D-to-2D mapping matrix. In each iter-
ation, adjustment to the landmarks is firstly estimated via a landmark
regressor, and this landmark adjustment is also used to estimate 3D face
shape adjustment via a shape regressor. The 3D-to-2D mapping is then
computed based on the adjusted 3D face shape and 2D landmarks, and
it further refines the 2D landmarks. An effective algorithm is devised to
learn these regressors based on a training dataset of pairing annotated 3D
face shapes and 2D face images. Compared with existing methods, the
proposed method can fully automatically generate PEN 3D face shapes
in real time from a single 2D face image and locate both visible and
invisible 2D landmarks. Extensive experiments show that the proposed
method can achieve the state-of-the-art accuracy in both face alignment
and 3D face reconstruction, and benefit face recognition owing to its
reconstructed PEN 3D face shapes.

Keywords: Face alignment · 3D face reconstruction · Cascaded
regression

1 Introduction

Three-dimensional (3D) face models have recently been employed to assist pose
or expression invariant face recognition [3,14,42], and the state-of-the-art perfor-
mance has been achieved. A crucial step in these 3D face-assisted face recognition
methods is to reconstruct the 3D face model from a two-dimensional (2D) face
image. Besides its applications in face recognition, 3D face reconstruction is also
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Fig. 1. We view 2D landmarks are generated from a 3D face through 3D expression (fE)
and pose (fP ) deformation, and camera projection (fC) (top row). While conventional
face alignment and 3D face reconstruction are two separate tasks and the latter requires
the former as the input, this paper performs these two tasks jointly, i.e., reconstructing
a pose-expression-normalized (PEN) 3D face and estimating visible/invisible landmarks
(green/red points) from a 2D face image with arbitrary poses and expressions. (Color
figure online)

useful in other face-related tasks, such as facial expression analysis [7,36] and
facial animation [4,5]. While many 3D face reconstruction methods are available,
they require landmarks on the face image as input, and are difficult to handle
large-pose faces that have invisible landmarks due to self-occlusion.

Existing studies tackle the problems of face alignment (or facial landmark
localization) and 3D face reconstruction separately. However, these two problems
are chicken-and-egg problems. On one hand, 2D face images are projections of 3D
faces onto the 2D plane. Knowing a 3D face and a 3D-to-2D mapping function,
it is easy to compute the visibility and position of 2D landmarks. On the other
hand, the landmarks provide rich information about facial geometry, which is
the basis of 3D face reconstruction. Figure 1 illustrates the correlation between
2D landmarks and the 3D face. That is, the visibility and position of landmarks
in the projected 2D image are determined by three factors: the 3D face shape,
3D deformation due to expression and pose, and camera projection parameters.
Let us denote a 3D face shape as S and its 2D landmarks as U . The formation
of 2D landmarks from the 3D face can be represented by U = fC ◦ fP ◦ fE(S),
where fC is camera projection, fP and fE are deformation caused by pose and
expression, respectively. Given such a clear correlation between 2D landmarks U
and 3D shape S, it is evident that they should ideally be solved jointly, instead
of separately as in prior works - indeed this is the core of this work.

Motivated by the aforementioned observation, this paper proposes to simulta-
neously solve the two problems of face alignment and 3D face shape reconstruc-
tion in one unified framework. To this end, two sets of regressors are jointly learned
from a training set of pairing annotated 2D face images and 3D face shapes. These
two sets of regressors are alternately applied to locate the landmarks on an input
2D image, and meanwhile reconstruct its pose-expression-normalized (PEN) 3D
face shape. Note that most single image-based 3D face reconstruction algorithms
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aim to assist face recognition. For this purpose, we argue that reconstructing the
PEN 3D shape is more useful than reconstructing the 3D shape that has the same
pose and expression as the input 2D face [23,28,31].

The rest of this paper is organized as follows. Section 2 briefly reviews related
work in the literature. Section 3 introduces in detail the proposed joint face
alignment and 3D face reconstruction method. Section 4 reports experimental
results. Section 5 concludes the paper.

2 Related Work

Face Alignment. Classical face alignment methods, including Active Shape
Model (ASM) [9,11] or Active Appearance Model (AAM) [8,25], search for land-
marks based on global shape models and generative texture models. Constrained
Local Model (CLM) [10] also utilizes global shape models to regularize the land-
mark locations, but it employs discriminative local texture models. Regression
based methods [6,27,35,39] have been recently proposed to directly estimate
landmark locations by applying cascaded regressors to an input 2D face image.
These methods mostly do not consider the visibility of facial landmarks under
different view angles. Consequently, their performance degrades substantially for
non-frontal faces, and their detected landmarks could be ambiguous because the
anatomically correct landmarksmight be invisible due to self-occlusion (seeFig. 1).

A few methods focused on large-pose face alignment, which can be roughly
divided into two categories: multi-view based and 3D model based. Multi-view
based methods [37,40] define different sets of landmarks as templates, one for
each view range. Given an input image, they fit the multi-view templates to it
and choose the best fitted one as the final result. These methods are usually
complicated to apply, and can not detect invisible self-occluded landmarks. 3D
model based methods, in contrast, can better handle self-occluded landmarks
with the assistance of 3D face models. Their basic idea is to fit a 3D face model to
the input image to recover the 3D landmark locations. Most of these methods [17,
18,41] use 3D morphable models (3DMM) [2] – either a simplified one with a
sparse set of landmarks [18,41] or a relatively dense one [17]. They estimate the
3DMM parameters by using cascaded regressors with texture features as the
input. In [18], the visibility of landmarks is explicitly computed, and the method
can cope with face images of yaw angles ranging from −90◦ to 90◦, whereas the
method in [17] does not work properly for faces of yaw angles beyond 60◦. In [33],
Tulyakov and Sebe propose to directly estimate the 3D landmark locations via
texture-feature-based regressors for faces of yaw angles upto 50◦.

These existing 3D model based methods establish regressions between 2D
image features and 3D landmark locations (or indirectly, 3DMM parameters).
While our proposed approach is also based on 3D model, unlike existing methods,
it carries out regressions both on 2D images and in the 3D space. Regressions on
2D images predict 2D landmarks, while regressions in the 3D space predict 3D
landmarks locations. By integrating both regressions, our proposed method can
more accurately locate landmarks, and better handle self-occluded landmarks.
It thus works well for images of arbitrary view angles in [−90◦, 90◦].
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3D Face Reconstruction. Estimating the 3D face geometry from a single 2D
image is an ill-posed problem. Existing methods, such as Shape from Shading
(SFS) and 3DMM, thus heavily depend on priors or constraints. SFS based meth-
ods [20,31] usually utilize an average 3D face model as a reference, and assume
the Lambertian lighting model for the 3D face surface. One limitation of SFS
methods lies in its assumed connection between 2D texture clues and 3D shape,
which is too weak to discriminate among different individuals. 3DMM [2,3,28]
establishes statistical parametric models for both texture and shape, and repre-
sents a 3D face as a linear combination of basis shapes and textures. To recover
the 3D face from a 2D image, 3DMM-based methods estimate the combination
coefficients by minimizing the discrepancy between the input 2D face image and
the one rendered from the reconstructed 3D face. They can better cope with 2D
face images of varying illuminations and poses. However, they still suffer from
invisible facial landmarks when the input face has large pose angles. To deal with
extreme poses, Lee et al. [22], Qu et al. [26] and Liu et al. [23] propose to discard
the self-occluded landmarks or treat them as missing data. All these existing
3D face reconstruction methods require landmarks as input. Consequently, they
either manually mark the landmarks, or employ standalone face alignment meth-
ods to automatically locate the landmarks. Moreover, existing methods always
generate 3D faces that have the same pose and expression as the input image,
which may not be desired in face recognition due to the challenge of matching
3D faces with expressions [12]. In this paper, we improve 3D face reconstruction
from two aspects: (i) integrating the face alignment step into the 3D face recon-
struction procedure, and (ii) reconstructing PEN 3D faces, which are believed
to be useful for face recognition.

3 Proposed Method

3.1 Overview

We denote an n-vertex 3D face shape of neutral expression and frontal pose as,

S =

⎛
⎜⎜⎝

x1 x2 · · · xn

y1 y2 · · · yn
z1 z2 · · · zn
1 1 · · · 1

⎞
⎟⎟⎠ , (1)

and a subset of S with columns corresponding to l landmarks as SL. The pro-
jections of these landmarks on the 2D face image I are represented by

U =
(

u1 u2 · · · ul

v1 v2 · · · vl

)
= fC ◦ fP ◦ fE(SL) ≈ M × SL. (2)

Here, we use a 3D-to-2D mapping matrix M to approximate the compos-
ite effect of expression and pose induced deformation and camera projection.
Given an input 2D face image I, our goal is to simultaneously locate its
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Fig. 2. Flowchart of the proposed joint face alignment and 3D face reconstruction
method.

landmarks U and reconstruct its 3D face shape S. Note that, in some con-
text, we also write the 3D face shape and the landmarks as column vectors:
S = (x1, y1, z1, x2, y2, z2, · · · , xn, yn, zn)T, and U = (u1, v1, u2, v2, · · · , ul, vl)T,
where ‘T’ is transpose operator.

Figure 2 shows the flowchart of the proposed method. For the input 2D face
image I, its 3D face shape S is initialized as the mean 3D shape of training
faces. Its landmarks U are initialized by fitting the mean landmarks of training
frontal faces into the face region specified by a bounding box in I via similarity
transforms. U and S are iteratively updated by applying a series of regressors.
Each iteration contains three main steps: (i) updating landmarks, (ii) updating
3D face shape, and (iii) refining landmarks.

Updating landmarks. This step updates the landmarks’ locations from Uk−1

to Ûk based on the texture features in the input 2D image. This is similar to the
conventional cascaded regressor based 2D face alignment [35]. The adjustment
to the landmarks’ locations in kth iteration, ΔUk is determined by the local
texture features around Uk−1 via a regressor,

ΔUk = Rk
U (h(I,Uk−1)), (3)

where h(I,U) denotes a texture feature extracted around the landmarks U in the
image I, and Rk

U is a regression function. The landmarks can be then updated
by Ûk = Uk−1 + ΔUk. The method for learning these landmark regressors will
be introduced in Sect. 3.3.

Updating 3D face shape. In this step, the above-obtained landmark location
adjustment is used to estimate the adjustment of the 3D face shape. Specifically,
a regression function Rk

S models the correlation between the landmark location
adjustment ΔUk and the expected adjustment to the 3D shape ΔSk, i.e.,

ΔSk = Rk
S(ΔUk). (4)
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The 3D shape can be then updated by Sk = Sk−1 + ΔSk. The method for
learning these shape regressors will be given in Sect. 3.4.

Refining landmarks. Once a new estimate of the 3D shape is obtained, the
landmarks can be further refined accordingly. For this purpose, the 3D-to-2D
mapping matrix is needed. Hence, we estimate Mk based on Sk and Ûk. The
refined landmarks Uk can be then obtained by projecting Sk onto the image via
Mk according to Eq. (2). During this process, the visibility of the landmarks is
also re-computed. Details about this step will be given in Sect. 3.5.

3.2 Training Data Preparation

Before we provide the details about the three steps, we first introduce the train-
ing data needed for learning the landmarks and 3D shape regressors. Since the
purpose of these regressors is to gradually adjust the estimated landmarks and
3D shape towards their true values, we need a sufficient number of triplet data
{(Ii,S∗

i ,U
∗
i )|i = 1, 2, · · · , N}, where S∗

i and U∗
i are, respectively, the ground

truth 3D shape and landmarks for the image Ii, and N is the total number
of training samples. All the 3D face shapes have been established dense corre-
spondences among their vertices; in other words, they have the same number of
vertices, and vertices of the same index have the same semantic meaning. More-
over, both visible and invisible landmarks in Ii have been annotated and included
in U∗

i . For invisible landmarks, the annotated positions should be anatomically
correct positions (e.g., red points in Fig. 1).

Obviously, to make the regressors robust to expression and pose variations,
the training data should contain 2D face images of varying expressions and poses.
As for the 3D shape S∗

i corresponding to the Ii in the training data, it can
either have the same expression and pose as Ii, or just have neutral expression
and frontal pose no matter what expression and pose Ii has. In the former, the
learned regressors will output 3D face shapes that have the same expression
and pose as the input images; while in the latter, the learned regressors will
generate neutral and frontal 3D shapes for any input images. In either case, the
dense registration among all 3D shapes S∗

i is needed for regressor learning. In
this paper, we follow the latter for two reasons: (i) dense registration of 3D face
shapes with different expressions is difficult, and (ii) the reconstructed PEN 3D
shapes are preferred for being used in 3D face recognition.

It is, however, difficult to find in the public domain such data sets of
3D face shapes and corresponding annotated 2D images with various expres-
sions/poses. Thus, we construct two sets of training data by ourselves: one based
on BU3DFE [36], and the other based on LFW [16]. BU3DFE database contains
3D face scans of 56 males and 44 females, acquired in neutral plus six basic
expressions (happiness, disgust, fear, angry, surprise and sadness). All basic
expressions are acquired at four levels of intensity. These 3D face scans have
been manually annotated with 84 landmarks (83 landmarks provided by the
database and one nose tip marked by ourselves). For each of the 100 subjects,
we select one scan of neutral expression as the ground truth 3D shape. For the
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Fig. 3. Example 2D face images with annotated landmarks and corresponding neutral
3D shapes from the BU3DFE and LFW databases.

rest six expressions, we choose the scans of the first level intensity, and project
them to 2D images with recorded landmark locations. From each of the seven
scans, 19 face images are generated with different poses (−90◦ to 90◦ yaw with
a 10◦ interval). As a result, each 3D shape has 133 images of different poses
and expressions. We use the method [13] to establish dense correspondence of
BU3DFE neutral scans.

LFW database contains 13,233 images of 5,749 subjects. We select 150 sub-
jects, each having at least 10 images, and use 68 landmarks on these face images
that are provided by the work of [41]. From the neutral frontal image of each
subject, we employ the method in [23] to reconstruct the 3D shape, which is
densely registered. Finally, we obtain 4,149 images of 150 subjects and their
corresponding neutral 3D face shapes.

The resultant 3D shapes have n = 9, 677 for BU3DFE and n = 53, 215 for
LFW. Figure 3 shows some example 2D face images and corresponding 3D faces
in the two databases. Obviously, 3D shapes in BU3DFE consist of a sparser set
of vertices, and consequently look a little bit blur in Fig. 3.

3.3 Learning Landmark Regressors

According to Eq. (3), landmark regressors estimate the adjustment to Uk−1

such that the updated landmarks Uk get closer to their true positions. In the
training phase, the true positions and visibility of the landmarks are given by
the ground truth U∗. Therefore, the objective of the landmark regressors Rk

U is
to better predict the difference between Uk and U∗. In this paper, we employ
linear regressors as the landmark regressors, and learn them by fulfilling the
following optimization:

Rk
U = arg min

Rk
U

N∑
i=1

‖ (
U∗

i − Uk
i

) − Rk
U (h(Ii,Uk−1

i )) ‖22, (5)
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which has a close-form least-square solution. Note that other regression schemes,
such as CNN [19], can be easily adopted in our framework.

We use 128-dim SIFT descriptors [24] as the local feature. The feature vector
of h is a concatenation of the SIFT descriptors at all the l landmarks, i.e., a
128l-dim vector. If a landmark is invisible, no feature will be extracted, and its
corresponding entries in h will be zero. It is worth mentioning that the regressors
estimate the semantic positions of all landmarks including invisible landmarks.

3.4 Learning 3D Shape Regressors

The landmark adjustment ΔUk is also used as the input to the 3D shape regres-
sor Rk

S . The objective of Rk
S is to compute an update to the initially estimated 3D

shape Sk−1 in the kth iteration to minimize the difference between the updated
3D shape and the ground truth. Using similar linear regressors, the 3D shape
regressors can be learned by solving the following optimization via least squares:

Rk
S = arg min

Rk
S

N∑
i=1

‖ (S∗
i − Sk

i ) − Rk
S

(
ΔUk

i

) ‖22, (6)

with its closed form solution as

Rk
S = ΔS

k(ΔU
k)T(ΔU

k(ΔU
k)T)−1, (7)

where ΔS
k = S

∗ − S
k and ΔU

k are, respectively, the 3D shape and landmark
adjustment. S ∈ R

3n∗N and U ∈ R
2l∗N denote, respectively, the ensemble of

3D face shapes and 2D landmarks of all training samples with each column
corresponding to one sample. It can be mathematically shown that N should
be larger than 2l so that ΔU

k(ΔU
k)T is invertible. Fortunately, since the set

of used landmarks are usually sparse, this requirement is easy to be satisfied in
real-world applications.

3.5 Estimating 3D-to-2D Mapping and Landmark Visibility

In order to refine the landmarks with the updated 3D face shape, we have to
project the 3D shape to the 2D image with a 3D-to-2D mapping matrix. In this
paper, we dynamically estimate the mapping matrix based on Sk and Ûk. As
discussed earlier in Sect. 3.1, the mapping matrix is a composite effect of expres-
sion and pose induced deformation and camera projection. Here, we assume a
weak perspective projection for the camera projection as in prior work [18,38],
and further assume that the expression and pose induced deformation can be
approximated by a linear transform. As a result, the mapping matrix Mk is
represented by a 2 × 4 matrix, and can be estimated as a least squares solution
to the following fitting problem:

Mk = arg min
Mk

‖ Ûk − Mk × Sk
L ‖22 . (8)
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Once a new mapping matrix is computed, the landmarks can be further refined
as Uk = Mk × Sk

L.
The visibility of the landmarks can be then computed based on the mapping

matrix M using the method in [18]. Suppose the average surface normal around
a landmark in the 3D face shape S is −→n . Its visibility v can be measured by

v =
1
2

(
1 + sgn

(
−→n ·

(
M1

‖M1‖ × M2

‖M2‖
)))

, (9)

where sgn() is the sign function, ‘·’ means dot product and ‘×’ cross-product,
and M1 and M2 are the left-most three elements at the first and second row of
the mapping matrix M. This basically rotates the surface normal and validates
if it points toward the camera or not.

The whole process of learning the cascaded coupled landmark and 3D shape
regressors is summarized in Algorithm 1.

Algorithm 1. Cascaded Coupled-Regressor Learning.
Input: Training data {(Ii,S∗

i ,U
∗
i )|i = 1, 2, · · · , N}, initial shape S0

i & landmarks U0
i .

Output: Cascaded coupled-regressors
{
Rk

U , Rk
S

}K
k=1

.
1: for k = 1, ..., K do
2: Estimate Rk

U via Eq. (5), and compute landmark adjustment ΔUk
i via Eq. (3);

3: Update landmarks Ûk
i for all images: Ûk

i = Uk−1
i + ΔUk

i ;
4: Estimate Rk

S via Eq. (6), and compute shape adjustment ΔSk
i via Eq. (4);

5: Update 3D face Sk
i : S

k
i = Sk−1

i + ΔSk
i ;

6: Estimate the 3D-to-2D mapping matrix Mk
i via Eq. (8);

7: Compute the refined landmarks Uk
i via Eq. (2) and their visibility via Eq. (9).

8: end for

4 Experiments

4.1 Protocols

We conduct three sets of experiments to evaluate the proposed method in 3D
shape reconstruction, face alignment, and benefits to face recognition.

Datasets. The training data are constructed from two public face databases:
BU3DFE and LFW, as detailed in Sect. 3.2. Respectively, two different models
are trained using each of the two training sets. Our test sets include BU3DFE
and AFW (Annotated Faces in-the-Wild) [40]. To evaluate the 3D shape recon-
struction accuracy, a 10-fold cross validation is applied to split the BU3DFE data
into training and testing subsets, resulting in 11,970 training samples and 1,330
testing samples. To evaluate the face alignment accuracy, the AFW database [40]
is tested using the LFW-trained model. AFW is a widely used benchmark in the
face alignment literature. It contains 205 images of 468 faces with different poses
within ±90◦. In [30], 337 of these faces have been manually annotated with face
bounding boxes and 68 landmarks. We use them in our experiments.
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Experiment setup. During training and testing, each image is associated with
a bounding box, which specifies the face region in the image. To initialize the land-
marks in it, the mean of the landmarks in all neutral frontal training images is fit-
ted to the face region via a similarity transform. In this paper, we set the number
of iterations K = 5 (discussion of convergence issue is provided in supplemental
material). SIFT descriptors are computed on 32 × 32 local patches around the
landmarks, and the implementation by [35] is used in our experiments.

Evaluation metrics. Two metrics are used to evaluate the 3D face shape
reconstruction accuracy: Mean Absolute Error (MAE) and Normalized Per-
vertex Depth Error (NPDE). MAE is defined as MAE = 1

NT

∑NT

i=1(‖S∗
i − Ŝi‖/n),

where NT is the total number of testing samples, S∗
i and Ŝi are the ground

truth and reconstructed 3D face shape of the ith testing sample. NPDE mea-
sures the depth error at the jth vertex in a testing sample as NPDE(xj , yj) =(|z∗

j − ẑj |
)
/ (z∗

max − z∗
min), where z∗

max and z∗
min are the maximum and mini-

mum depth values in the ground truth 3D shape of the testing sample, and z∗
j

and ẑj are the ground truth and reconstructed depth values at the jth vertex.
The face alignment accuracy is measured by Normalized Mean Error (NME).

It is defined as the mean of the normalized estimation error of visible landmarks
for all testing samples:

NME =
1

NT

NT∑
i=1

⎛
⎝ 1

di

1
Nv

i

l∑
j=1

vij ||(ûij , v̂ij) − (u∗
ij , v

∗
ij)||

⎞
⎠, (10)

where di is the square root of the face bounding box area of the ith testing
sample, Nv

i is the number of visible landmarks in it, (u∗
ij , v

∗
ij) and (ûij , v̂ij) are,

respectively, the ground truth and estimated coordinates of its jth landmark.

4.2 3D Face Reconstruction Accuracy

Reconstruction accuracy across poses. Figure 4(a) shows the average MAE
of our proposed method under different pose angles of the input 2D images.

Fig. 4. MAE of the proposed method on BU3DFE (a) under different yaw angles and
(b) under different expressions, i.e., neutral (NE), happy (HA), fear (FE), sad (SA),
angry (AN), disgust (DI) and surprise (SU).
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Fig. 5. Reconstruction results for a BU3DFE subject at three different pose angles.
Column one are input images. Columns 2 and 3 show the reconstructed (‘REC’) 3D
faces from two views. Column 4 are the NPDE between the ground truth (‘GT’) and
REC 3D faces. The detected landmarks are shown in Column 5. The last column shows
the GT 3D face of this subject, the initial (‘INIT’) 3D face, and the NPDE between
them. NPDE increases as the color changes from blue to red. The average and the
standard deviation are given below each NPDE map. Note that the same INIT 3D face
is used for all input images. (Color figure online)

To give a fair comparison with the method in [23], we only compute the recon-
struction error of neutral testing images, after rotating the reconstructed 3D
faces to frontal view. As can be seen, the average MAE of our method is lower
than that of the baseline. Moreover, as the pose angle becomes large, the error
does not increase substantially. This proves the effectiveness of the proposed
method in handling arbitrary view face images. Figure 5 shows the reconstruc-
tion and face alignment results of one subject.

Reconstruction accuracy across expressions. Figure 4(b) shows the aver-
age MAE of our proposed method across expressions. Although the error
increases as expressions become intensive, the maximum increment (i.e., SU vs.
NE) is below 7%. This proves the robustness of the proposed method in nor-
malizing expressions while maintaining model individualities. Figure 6 shows the
reconstruction and face alignment results of a subject under seven expressions.
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Fig. 6. Face alignment and reconstruction results for a BU3DFE subject with different
expressions. Row 1 shows the input images. Row 2 shows the estimated 3D shapes,
and Row 3 shows the NPDE maps with the average and standard deviation. The last
row shows the detected landmarks.

4.3 Face Alignment Accuracy

As for the face alignment evaluation on AFW, we select two recent works as
baseline methods: (1) CDM [37], the first method claimed to perform pose-free
face alignment; (2) PIFA [18], a regression-type method that can predict the
anatomically correct locations of landmarks for arbitrary view face images. We
use the executable code of CDM and PIFA to compute their performance on
our test set. The CDM code integrates face detection, and it successfully detects
and aligns 268 out of 337 testing images. Therefore, to compare with CDM, we
evaluate the NME on the 268 testing images. For PIFA and the proposed method,
the face bounding boxes provided by [30] are used. One note is that the CDM
detects 66 landmarks and PIFA detects 21 landmarks. For a fair comparison,
we evaluate the NME on 18 landmarks that are the intersections of the three
landmark sets. As shown in Table 1, our accuracy is better than the two baseline
methods. Figure 7 shows some face alignment results.

Table 1. NME of the proposed method and two baseline methods on AFW.

Method CDM [37] PIFA [18] The proposed method

NME 7.52 % 5.60 % 3.15 %
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Fig. 7. Detected 18 landmarks for images in AFW by the proposed method.

4.4 Application to Face Recognition

While there are many recent face alignment and reconstruction work [1,15,21,
29,32,34], few work takes one step further to evaluate the contribution of align-
ment or reconstruction to subsequent tasks. In contrast, we quantitatively eval-
uate the effect of the reconstructed PEN 3D face shapes on face recognition by
performing direct 3D to 3D shape matching and fuse it with conventional 2D
face recognition. Specifically, we choose 70 subjects in BU3DFE to train the
proposed regressors, and use the rest 30 subjects for testing. The neutral frontal
face images of the testing subjects compose the gallery, and their faces under 19
poses and 7 expressions (totally 3,990 images) are the probe images. We use a
commercial off-the-shelf (COTS) 2D face matcher1 as the baseline. The iterative
closest points (ICP) algorithm is applied to match the reconstructed normalized
3D face shapes. It aligns the 3D shapes reconstructed from probe and gallery
images, and computes the distances between them, which are then converted
to similarity scores via subtracting them from the maximum distance. These
scores are finally normalized to the range of [0, 1], and fused with the scores
of the COTS matcher (which are within [0, 1] also) by using a sum rule. The
recognition result for a probe is defined as the subject whose gallery sample
has the highest score with it. The recognition rate is then defined as the per-
centage of correctly recognized subjects. Figure 8 shows the recognition rates. It
can be clearly seen that the reconstructed normalized 3D face shapes do help
improve the face recognition accuracy, especially for face images of large pose
angles and all types of expressions. Interestingly, despite the relatively robust
2D face recognition performance w.r.t. expressions, the fusion with 3D matching

1 http://www.wisesoft.com.cn.

http://www.wisesoft.com.cn
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Fig. 8. Face recognition results of a COTS matcher and its fusion with proposed recon-
structed 3D face based matcher under varying (a) poses and (b) expressions.

still improves the performance across all expressions – a strong testimony on the
discriminative capability of the expression-normalized 3D face shape.

4.5 Computational Efficiency

According to our experiments on a PC with i7-4710 CPU and 8 GB memory,
the Matlab implementation of the proposed method runs at ∼ 26 FPS (K = 5
and n = 9, 677). Hence, it can detect landmarks and reconstruct 3D face shape
in real time.

5 Conclusions

In this paper, we present a novel regression based method for simultaneous
face alignment and 3D face reconstruction for 2D images of arbitrary poses and
expressions. It utilizes landmarks on a 2D face image as clues for reconstruct-
ing 3D shapes, and uses the reconstructed 3D shapes to refine landmarks. By
alternately applying cascaded landmark regressors and 3D shape regressors, the
proposed method can effectively accomplish the two tasks simultaneously in
real time. Unlike existing 3D face reconstruction methods, the proposed method
does not require additional face alignment methods, but can fully automatically
reconstruct normalized 3D shapes from a single face image of arbitrary poses
and expressions. Compared with existing face alignment methods, the proposed
method can effectively handle invisible landmarks with the assistance of 3D
face models. Extensive experiments with comparison to state-of-the-art meth-
ods demonstrate the effectiveness of the proposed method in both face alignment
and 3D face shape reconstruction, and in facilitating face recognition as well.
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